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ABSTRACT 
This paper studies the scalable coding and progressive 
transmission of concentric mosaic to support interactive 
applications over LAN or Internet. Concentric mosaic is an 
effective 3D image based representation of static scene. A 
typical concentric mosaic might consist of thousands of images, 
which poses significant problem in digital storage and 
transmission. A new multiresolution decomposition for 
supporting progressive transmission of concentric mosaic is 
proposed. Instead of using the propular 9/7 wavelet filterbank, 
a nonlinear perfect reconstruction filter bank with lower 
arithmetic complexity is employed. It also considerably 
simplifies the random access operation of the slit images during 
rendering. By encoding the subband signals into different 
layers, a scalable compressed bit stream of the concentric 
mosaic is obtained. Therefore progressive transmission of 
concentric mosaic, using a combination of these layers, to 
support devices with different capabilities become possible. 

1. INTRODUCTION 

Image based rendering (IBR) has recently emerged as a simple 
yet powerful photo-realistic representation of real world scenes 
[1,3-71. Its basic principle is to render new views of a scene 
using rays that were previously captured in densely sampled 
pictures of the scene. It has plenty of applications including 
virtual walkthrough, electronic games, medical simulation, 
visualization and many others, which requires virtual camera 
motion. IBR is also an excellent alternative to conventional 
3D model building if what we want is just to re-render novel 
views at different viewpoints. It not only provides superior 
image quality than 3D model building for real world scenes, 
but also requires much less computational power for rendering, 
regardless of the scene complexity. Central to IBR is the 
plenoptic function [2], which describes all of the radiant energy 
that can be perceived by the observer at any point in space and 
time. In its most general form, it is a 7-dimensional function 
allowing one to reconstruct any novel view at any point in 
space and time. If the viewpoint is fixed and only the viewing 
directions and camera zoom can be altered, the plenoptic 
function simply becomes a 2D panorama (cylindrical [5] or 
spherical [6]). Due to the difficulties in capturing and storing 
the complete plenoptic function, many simplifications have 
been proposed. This includes the 4D Light Field [3] and the 
4D Lumigraph [4], where the plenoptic function of a static 
scene under the constraint that the object or the viewer could be 
constrained within a 3D bounding box is captured. 

Recently, Shum and He [7] had proposed a 3D IBR 
representation of static scene called the concentric mosaics. It 
captures the plenoptic function when the user is constrained to 
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move inside a planar circle. Due to its reduced dimension, the 
construction of a concentric mosaic is relatively simple and the 
amount of data recorded is also significantly less than that 
required for Light Field and Lumigraph. A simple method for 
constructing a concentric mosaic is to take a series of images at 
different angles when a single camera, placed at the end of a 
round-swinging beam, is rotated in a circle. A typical 
concentrate mosaic might consist of thousands of images at a 
resolution of (320x240). For example, the ‘Lobby’ concentric 
mosaic [7] consists of 1350 images at a resolution of 
(320x240). which requires a total storage of 297 mega bytes. 
Because of this reason, the compression of IBR, and in 
particular concentric mosaic, has received considerable 
attention recently. 

Different compression schemes were developed to explore 
the correlation both within and across the image frames of the 
concentric mosaics [7-IO]. Unlike conventional image 
compression, individual lines of each mosaic image have to be 
rapidly decoded to support real-time rendering. This require- 
ment usually leads one to employ simple technique such as 
vector quantization (VQ) with a fixed length code word in 
compressing concentric mosaic [7] and other IBR represent- 
ation. Unfortunately, the compression ratio of VQ is usually 
limited (e.g. VQ in [7] achieves a compression ratio of only 
12:l). More recently, the authors have proposed MPEG2-like 
codec [8] for compressing concentric mosaics, while taking the 
random access problem into account. A compression of ratio 
of 65 can be achieved with good image reconstruction quality. 
A 3D wavelet approach has also been proposed for compress- 
ing concentric mosaics [9]. It achieves a better compression 
ratio at the expense of more complicated decoding procedure. 

In this paper, we study the scalable coding and progressive 
transmission of concentric mosaic to support interactive 
applications over LAN or Internet. As mentioned earlier, the 
amount of storage associated with concentric mosaic can be 
very large, occupying hundreds of mega bytes. This poses 
significant problems in supporting interactive applications in 
bandlimited channel such as the Internet. To avoid sending the 
whole concentric mosaic, progressive transmission operating in 
a “on demand” basis can be used to improve the interactive 
speeds by reducing amount of data to be transmitted, and hence 
the delay associated with transmission and decoding. A very 
popular and effective method for supporting progressive 
transmission of images and video is by means of 
multiresolution signal decomposition. In multiresolution signal 
decomposition [ I l l ,  the signal to be encoded is decomposed 
say by a perfect reconstruction filter bank into a series of 
subband signals with different resolution or importance. These 
subband signals are then encoded to form either an embedded 
bitstream or layers with increasing importance or resolution. In 
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this paper, we propc'se a new multiresolution decomposition for 
concentric mosaic wing a nonlinear perfect reconstruction filter 
bank. The main reason of using a nonlinear perfect 
reconstruction filter bank, instead of the commonly used 9/7 
wavelet filterbank [.12], is that its arithmetic complexity is very 
low and it consideralbly simplifies the random access operation 
of the slit images during rendering, as we shall see later in 
Section 3. Interested readers are referred to [16,17] for applying 
9f l  wavelet filter lo multiresolution video coding and their 
performances. By encoding the subband signals into different 
layers, a scalable icompressed bit stream of the concentric 
mosaic is obtained. Therefore progressive transmission of 
concentric mosaic, using combinations of these layers, to 
support devices with different capabilities becomes possible. 

The paper is organized as follows. A brief introduction to 
concentric mosaics .and its rendering scheme are introduced in 
Section 2. The m~~ltiresolution decomposition of concentric 
mosaic using the nonlinear filter bank is presented in Section 3. 
Experimental results are presented in Section 4. Finally, we 
summarize our works in Section 5 ,  the conclusion. 

2. CClNCENTRIC MOSAICS 

2.1. Capturing and Rendering a Novel View 

Concentric mosaics are a set of manifold mosaics [14] 
constructed from slit images taken by cameras rotating on 
concentric circles. Figure 1 shows how a mosaic image, CMk , 

is obtained by recoaiing the slit images, rk , that are tangent to 

the circle CO, , wh'm a camera is moving along the circle. A 
simpler method, called the normal setup, is to capture an image, 
instead of a slit image, using an outward facing camera when it 
is moving along a larger circle, CO, . It can be seen that rays 

of the inner circles, say 'k, are captured as part of these 
images. This considerably simplifies the capturing process 
because only one circular motion is necessary. The entire 
concentric mosaic is8 indexed by three parameters: the radius of 
the mosaic, the rotational angle of the camera, and the vertical 
elevation of the slit image. Therefore, it is very efficient to 
retrieve the appropriate slit images from the mosaic images to 
construct a novel view at any position inside the circle. 
Consider the rendering of a novel view at a point P with a polar 
co-ordinate ( R , B )  measured from the center of the CM as 

shown in Figure 2. The ray Zi is not captured at the novel 
view point P .  Since: the circular region is a free space, we can 
use the ray previous captured at point v i  in the concentric 

mosaic C M ,  . Similarly, the ray P V ,  can be retrieved from 

the point vj in the concentric mosaic CM, . Therefore, the 

novel view at P (:an be completely constructed from the 
concentric mosaics. In practice, however, only a small subset 
of the rays is stored in the concentric mosaics. For those rays 
that are not recorded in the concentric mosaics, they have to be 
approximated from adjacent ones that have previously been 
recorded. Interested readers are referred to [7] for more details. 

2.2. Compression and the Random Access Problem 
As mentioned earlier, concentric mosaic can be compressed by 
a MPEG2-like codw supporting random access to individual 
slit image in a mosaic picture [SI. This is illustrated in 
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Figure 1. Construction of concentric mosaic from one circle: 
along normal. 
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Figure 3. Random access for each line in a mosaic image. 
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Figure 4. Scalable bitstreams for supporting users with different 
capabilities. 

Figure 3, showing how random access to a slit image can be 
performed. The mosaic image is divided into non-overlapping 
blocks of size (16x16 macroblock). Here, the blocks are 
scanned vertically so that pixel data of each vertical line are 
contained in a group of consecutive blocks. In order to retrieve 
the pixel data of a line, only the compressed data of the blocks 
containing that line have to be located and decoded. Locating 
this data from the compressed data stream by searching the 
headers of the blocks can be very time consuming, especially 
for real-time rendering. To overcome this problem, a set of 
pointers to the starting locations of the vertical group of blocks 
in the compressed data is first determined and stored in an array 
prior to rendering. In performing a multiresolution 
decomposition of concentric mosaic, one must also take into 
account this random access problem. Otherwise, the decoding 
speed can be very slow. 
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3. MULTIRESOLUTION REPRESENTATION OF 
CONCENTRIC MOSAIC 

Non Linear 
Filler Bank 

3.1 Progressive Transmission 

In order to deliver the interactive virtual walkthrough 
experience offered by concentric mosaics, the compressed data 
might be transmitted to the users through the Internet or LAN. 
In applications where the channel has limited or rapidly 
changing bandwidth such as Internet, it is undesireable to keep 
user waiting for a long time while transmitting the whole data 
stream. By using multiresolution technique, we can decompose 
the mosaic into different resolutions and encode them into 
different layers for transmission. Figure 4 illustrates this 
concept in a LAN environment. The base layer consisting of 
the lowest resolution of the mosaics and hence the smallest data 
size can be transmitted very quickly to the receiver to render a 
low quality novel view. Hence the user can start the 
application as soon as possible. For those terminals or users 
with limited capabilities, they can still make use of the base 
layer for rendering without any difficulties. Due to the division 
of the compressed data into different layers, the upper layers 
can be transmitted progressively afterwards. The quality of the 
mosaic is refined during the running time until eventually the 
highest resolution or quality is reached. 

3.2 Multiresolution Decomposition Using Nonlinear Filter 
Banks 

In this paper, we propose a new multiresolution decomposition 
for concentric mosaic using a nonlinear perfect reconstruction 
filter bank. The main reason of using a nonlinear perfect 
reconstruction filter bank, instead of the commonly used 9/7 
wavelet filterbank [12] is that it has a lower arithmetic 
complexity and lower support so that random access of the slit 
images during rendering can be considerably simplified. 
Figure 5 shows one level of decomposition using this non- 
linear filter bank [13]. For simplicity, a notation similar to the 
conventional filter bank systems is adopted, namely LL, LH, 
HL and HH bands. The low-low (LL) band is simply obtained 
by downsampling the original image by a factor of two both 
horizontally and vertically, and it consists of pixels at positions 
(2i, 2j). The HH band consists of prediction residuals, e(Zi+/,  
Zj+l). when pixels at positions ( Z i + I ,  Z j+l )  are predicted from 
its four quantized neighbours at positions (Z i ,  Zj) ,  (Zi+2, Zj). 
(2i, Zj+2), and (2i+2, Zj+2). Similarly, HL and LH bands 
consist of prediction residuals when the pixels at ( Z i + / ,  Z j )  and 
(2i, 2 j + l )  are predicted from their respective neighbours. 
Different prediction schemes can be used in this simple 
scheme. The following is a simple but effective scheme which 
is adopted from [13] : For 4 input samples { p l .  p2, p h  p 4 ) ,  
discard the minimum and maximum of ( p,,  pz ,  p.3, p 4 ) .  The 
output is equal to the mean of the remaining two elements. 
This operation though very simple is able to enhance image 
edges using only the subsampled image data. It can also be 
viewed as a post-processing operation for improving the visual 
quality of the reconstructed image. The operation is particular 
simple which involves only 4 comparsions and 2 additions per 
pixel. Similar decomposition can be applied to the LL band 
creating a multiresolution decomposition of the image, like an 
octave wavelet filter bank. Another reason for using this non- 
linear filter banks is that the reconstruction of a given pixel at a 
given resolution only requires its four adjacent neighbors, 
unlike their conventional linear counterparts. This property 
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Figure 5. One level of decomposition using the nonlinear filter 
bank, Samples marked with are used to predict the samples 
marked with , and * . e(* , ) are the prediction residuals. 

Low quality 
output 

Figure 6. Decoder of the proposed multiresolution schemes for 
concentric mosaics using the non-linear filter bank. 

Figure 7. A typical images of the decompressed mosaics 
sequences with base layer only. (Luminance component) 

greatly simplifies the rendering of concentric mosaic because 
only very few additional samples are needed to reconstruct a 
given pixel. Furthemore, the decomposition, as we have seen 
previously, does not require any multiplications or floating 
point numbers. 

In this paper, the base layer sequences is chosen as the LL 
band of the non-linear filter bank which can be compressed 
using the MPEG2 based encoder that we have described in 
Sect. 2.2. We use one I-frame and seven B-frames in a Group 
of Picture as in our previous work [8]. For simplicity, we shall 
consider one level of decomposition here. Generalization to 
include more levels, to increase the scalability of the data 
streams, can be done similarly. The HL, LH, and HH bands are 
then compressed by a MPEG2 like coder, treating each of them 
as the residuals of typical P-frames. Each of them will form an 
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additional enhancement layer for progressive transmission. 
Figure 6 shows the decoder of the proposed scalable coder for 
concentric mosaics using the non-linear filter banks. Another 
point worth mentioning for the non-linear decomposition is that 
it can significantly improve the performance of the coder at 
very low compression ratio. It is because at very low 
compression rate, all the high frequency subbands will be 
dropped in order to reduce the information to be encoded as 
well as those overheads (such as headers) associated with 
commonly used video coding standards. Therefore, it is 
possible to make better use of the available bits to achieve a 
more reasonable image quality even at very low bit-rate. Those 
users who have more resources or bandwidth can decode all the 
enhancement layers to obtain a high quality output. 

Layers 

4. EXPIERIMENTAL RESULTS 
The “lobby” concentric mosaic described in previous sections 
is compressed using the proposed scalable coding algorithm. 
For simplicity, only lone level of decomposition is used in our 
coder. As all the mosaic images will be used to render the 
novel views, it is important to ensure an acceptable quality 
throughout the images. Because of this reason, no rate control 
algorithm is applied and a uniform quantizer with a scale factor 
Q = 8 and 12 is used in the MPEG2 encoder for both the base 
and the enhancemeni. layers. Table 1 shows the compression 
performances of the different layers. For Q = 12, the 
compressed data size of the base layer is only 2.144 MB while 
the mean PSNR of the reconstructed mosaic images is 33.23dB 
(Luminance componi:nt in quarter resolution). In the decoder, 
Figure 6, the decoded low resolution image is interpolated 
using the simple reconstruction scheme in section 3.1. Figure 7 
shows a typical reconstructed mosaic images using the base 
layer and nonlinear interpolation. Although the mean PSNR of 
the mosaics images is only 26.37 dB, it can be seen that the 
visual quality is quite good and its compression ratio is 138.5. 
The edges are fairly sharp and there are no significant ringing 
artifacts which is frequently encountered in linear interpolation 
with long interpolation filters. It also found that the possible 
aliasing is not visually disturbing. Other more sophisticated 
post-processing schemes can be employed to further improve 
the image quality. Also, more levels of decomposition can be 
used to generate even lower resolution concentric mosaic for 
severely bandlimited channels. 

Data Mean PSNR (dB) 
Size 
(MB) I U V 

5. CONCLUSION 
A new multiresolution decomposition for supporting 
progressive transmission of concentric mosaic is presented. 
Instead of using the propular 9/7 wavelet filterbank, a nonlinear 
perfect reconstruction filter bank with lower arithmetic 
complexity is employed. Furthermore, due to the shorter 
support of the nonlinear filterbank, the random access of the slit 
images required for rendering is greatly simplified. By 
encoding the subbarid signals into different layers, a scalable 
compressed bit stream of the concentric mosaic is obtained. 
This can be used together with progressive transmission to 
support devices with different capabilities in viewing 
concentric mosaic over bandlimited channel. 

Base (Low Resolution) 
Base 
HH 

ACKNOWLEDGMENT 

2.144 33.23 40.54 39.66 
- 26.37 26.63 26.71 

2.531 30.71 40.38 39.54 , 

This work is supported by the Hong Kong Research Grants Council, 
Area of Excellent in Information Technology (AOE IT) project. 

Layers 

Base (Low Resolution) 
Base 

. ,  
Size 

3.222 34.71 41.73 40.74 
- 26.51 26.67 26.15 

(MB) U V 

II HL&LH I 2.682 I 31.59 I 40.43 I 39.59 n 
(a) Uniform quantizer Q = 12 for all layers 

I I Data I Mean PSNR (dB) 1 

I HH I 3.900 I 31.31 I 41.51 I 40.58 
I 4.436 I 32.44 I 41.59 I 40.68 HL&LH 

(b) Uniform quantizer Q = 8 for all layers 

Table 1. Compression performance of different layers. 
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