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ABSTRACT

In recent years wavelets have been quite successful in com-
pression or denoising applications. To further improve the
performance of wavelet based algorithms, we have recently
introduced the notion of footprint, which is a data structure
which contains all the wavelet coefficients generated by a
discontinuity. The combined use of wavelets and footprints
leads to very efficient algorithms for compression and de-
noising of 1-D piecewise smooth signals.

In this paper, we extend some of the previous results.
We present a new denoising algorithm, where footprints
are chosen adaptively according to the singularity locations.
This new algorithm outperforms previously proposed ones.
Then, we introduce the notion of edgeprints, which repre-
sents a natural extension of footprints to the two dimen-
sional case. First experimental results on compression of
2-D piecewise smooth signal using edgeprints are promis-
ing. :

1. INTRODUCTION

The design of a complete or overcomplete expansion that
allows for compact representation of arbitrary signals is a
central problem in signal processing applications. Wavelets,
for instance, are known to be good approximants for 1-D
piecewise smooth signals. The choice of a good basis, how-
ever, is only one of the elements that makes an efficient
compression algorithm. In a recent work [3], we have in-
troduced a compression algorithm that jointly uses wavelets
and footprints. This algorithm has the right R-D behaviour
for compression of piecewise polynomial signals. Footprint
is a data structure that contains all the non-zero wavelet co-
efficients generated by a singularity.

It is of interest to compare footprints with other data
structures like, for example, zerotrees [6]. Zerotrees indi-
cate absence of singularities, while footprints describe sin-
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gularities. Singularities are not well represented by zerotrees
(instead, a number of non-zero coefficients are coded inde-
pendently) while they can be more efficiently represented
by footprints. !

In this work, we propose a different interpretation of
footprints. We consider them as the elements of a redundant
linear basis (frame). This expansion has some remarkable
properties. It allows for a very compact representation of
piecewise polynomial signals and it can be made locally or-
thogonal. This is important because, when compression or
denoising are involved, it is more efficient to work with or-
thogonal bases. Thanks to these considerations, in Section
3, we present a new denoising algorithm which is adaptive
in the choice of the footprint expansions. This new algo-
rithm outperforms the non-adaptive one.

Finally, in Section 4, we introduce the notion of edgeprints
which is a natural extension of footprints to the two di-
mensional case. This extension is similar to geometrical
wavelets introduced in [5].

As footprints in 1-D, edgeprints allow to take advantage
of the dependency between the wavelet coefficients gener-
ated by an edge in an image. This is an important condition
to get an efficient 2-D compression algorithm.

2. THE FOOTPRINT EXPANSION

In [3], we have introduced the notion of footprints and pro-
posed their use for compression or denoising of piecewise
polynomial signals. What is interesting is that footprints
can be seen as an overcomplete basis for representation of
piecewise polynomial functions.

Consider a discrete time piecewise polynomial signal
X with polynomials of maximum degree N. Let us per-
form a J level wavelet decomposition of X (Y = WX,
where W is the wavelet operator). If the wavelet filter has at
least IV + 1 vanishing moments then the discrete time poly-

I There are several other works on modeling of the correlation between

_ wavelet coefficients. We do not quote all of them here for lack of space.
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nomials are represented by the scaling coefficients, while
the discontinuities are specified by few wavelet coefficients.
Specifically: a time domain discontinuity generates a re-
sponse of size J (the number of scales) by L — 1 (L is
the length of the wavelet filters) which we call a footprint.
This footprint depends on the location of the discontinuity,
namely, a particular discontinuity has 27 footprints, depend-
ing on its location. From now on f,gN) will denote a foot-
print; k is the discontinuity location in time domain and N
the maximum degree of the two polynomials around the dis-
continuity.

It is interesting to notice that any footprint f, ,SN) can be
obtained as a linear combination of N + 1 elementary or-
thonormal footprints: f{” i = 0,..,N (| f,E") = 1, and

< fD 9D 5= 6. Thatis: £V =N <y, f(’)

(') , where < Y, fm > is the inner product between f{”
and the wavelet coefficients of Y located at the same spatial
position as the coefficients of f,si) . This is like saying that
the wavelet coefficients generated by a time domain discon-
tinuity lie on a N + 1 dimensional sub-space and that the
elementary footprints ﬂ') are a possible basis for that sub-
space.

Now, if X has for instance only two discontinuities at
positions k; and ks, it clearly results, with a little abuse of

notation:
7)
: ) o))

where Y, are the scaling coefficients of Y. This expres-
sion highlights the advantage of using the footprint expan-
sion. A discrete time piecewise polynomial signal is com-
pletely characterized by the few footprint coefficients (and
the scaling coefficients Y;). Thus, footprints manage to give
a sparse representation of piecewise polynomial signals.

If the two discontinuities are far enough then the corre-
sponding footprints generated by them do not overlap and
we say that they are orthogonal. Then i, =<, f;, IS

and o, =< Y, sz > i =0,..,N. If the footprints over-
lap then they are not orthogonal and we need to construct
the correct dual basis to find the right values for a;;, and
Qify .

Two footprints overlap if k; and k» are not far enough,
but also if the number J of wavelet decomposition level is
large. To reduce the probability of overlapping footprints
J should be small. However, in some applications like sig-
nal denoising or compression performance increases if J is
large. To overcome this trade-off we propose an adaptive
choice of the level J according to the distance between dis-
continuities. A more detailed analysis of this adaptive al-
gorithm is given in the next section, where a new denoising
algorithm is presented.

N
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3. ADAPTIVE FOOTPRINT EXPANSIONS FOR
SIGNAL DENOISING

The term denoising is usually referred to the problem of re-
moving noise from a corrupted signal without impairing the
original signal too much. In the typical problem formula-
tion the original signal X has been corrupted by additive
Gaussian noise.

Now, assume that X is a piecewise polynomial signal
defined over the interval [0, T — 1]. We know that non-zero
wavelet coefficients appear only around discontinuities. More-
over, if IV is the maximum degree of any polynomial in the
signal, then the wavelet coefficients generated by any dis-
continuity lie on a N 41 dimensional sub-space represented
by the elementary footprints f,(c’). Based on this consider-
ation, in [4] it has been proposed to denoise the signal di-
rectly in the footprint domain. The advantage of doing so
is that the dependency between wavelet coefficients is ex-
ploited.

Let us call F the noisy version of X. The non-adaptive
denoising algorithm proposed in [4] works this way:

1. Compute a J level wavelet transform of the noisy signal:

G=WF.
2. Define a threshold Ty = 0v/2InT.

3. For each possible discontinuity position k € {1, T—1] com-
pute the N + 1 inner products < G, F9 >,
i=0,.,N.

. Choose the location k; such that 3% | < G, f,ﬁ;’ > |%is
maximum.

5. If

e {0.N}:[<G,fP>|>Th, @

then compute the residue:

RLt=G- Z<G 2> 1< 6, fP) > T} P

=0

. Iterate step 3-4-5 on the residue until condition (2) is not
verified anymore.

Finally the estimated signal X is:

M-1 N

Go+ 3> <R2fD > f(’)} 3)

m=0 i=0

where M is the total number of iterations, R = G and G,
are the scaling coefficients of G.

The performance of this algorithm depends on the choice
of J. On one hand we want J to be large so that the esti-
mation of the inner products < G, f, f® 5 is more correct. 2
On the other hand if J is too large it can happen that the

2The estimation is improved with the size of the footprint vector.



wavelet coefficients generated by two discontinuities over-
lap and the proposed algorithm does not do the right esti-
mation. In this case we need to know the dual basis of the
overlapping footprints.

Now, assume that we have an estimation of the discon-
tinuity locations of X. Call them ky, k2, ....kr. In our adap-
tive algorithm, at each iteration, J is chosen to be the maxi-
mum possible value such that there are no overlapping foot-
prints. That is: at the first iteration J = J; = |logy(kp, —
kp,—1) — log, (L — 1)] where ky, , kp, —1 are the two clos-
est discontinuity locations. The non-adaptive algorithm is
then applied on the interval [kp, _1,kp,] with J = J; and
the contributions of the estimated discontinuities are elim-
inated. The process is then iterated: the next chosen J is:
Jo = UOgZ(kpz - klsz—l) —logy (L —1)] where Fpys kpy—1
are the two closest discontinuity locations once the locations
kp., kp, —1 have been eliminated. The non-adaptive algo-
rithm is then applied on the new sub-interval [kp, -1, kp, ]
and with J = J. The algorithm ends when all the discon-
tinuities have been processed.

The last problem is to find a good estimator of the dis-
continuity locations ky, ka, ....kr. In our approach we com-
pute a J = log,(T") level wavelet transform and construct
the footprints expansion and the corresponding dual expan-
sion. For each discontinuity position we compute the inner
products between the wavelet coefficients and the right dual
footprints. If for a given location k&, one of the NV + 1 inner
products is larger than the threshold, we assume that at that
position there is a time domain discontinuity.

In conclusion we can say that the estimation of the dis-
continuity locations is performed using the dual expansion,
while the characteristic of the discontinuities (i.e. the value
of the coefficients ax, in Eq. (1)) is estimated using non-
overlapping footprints.

4. EDGEPRINTS

Footprints are a powerful tool for signal compression and
denoising, but they work only on one-dimensional signals.
Thus, it is natural to look for an extension to the two dimen-
sional case. The extension we propose is similar to the idea
of bandelets introduced in [5)].

Consider a two-dimensional piecewise polynomial sig-
nal with discontinuities represented by regular curves. > Each
line (or each column) of this signal is piecewise polynomial,
s0 it can be represented in terms of footprints. Consider the
lth line and call it X, we have:

N N
X=w" (Y, +Y el fO 4+ ol f,S;’) . @)
i=0

=0

3 A real image can be approximately seen as two-dimensional piecewise
polynomial signal, but where some pieces have added texture.
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Where coefficients al(f,zl for ¢ = 0,.., N characterize the
singularity of the line [ at position k;. Now, the footprint
coefficients detected are chained together to form curves.
These curves which are one-dimensional signals are called
edgeprints. Suppose that our image is formed by two poly-
nomials of maximum degree IV and these two polynomi-
als are separated by one curve. This single curve generates
N + 1 edgeprints in much the same way that a singularity in
the one-dimensional case generates V + 1 footprint coeffi-
cients. The edgeprint of order zero is obtained by chain-
ing the footprint coefficients of order zero (i.e. af,(i),m),
the edgeprint of order one by chaining the footprint coef-
ficients of order one and so on. Now, each edgeprint is a
one-dimensional piecewise smooth function that can be ef-
ficiently compressed using footprints. Thus, applying foot-
prints on edgeprints we get a very sparse representation of
the original image.

The main advantage of using edgeprints instead of ban-
delets is that we completely exploit the dependency between
the wavelet coefficients generated by an edge. In fact, the
wavelet coefficients generated by an edge are spatially cor-
related and correlated across scales. By applying footprints
on edgeprints, we fully exploit either the spatial correlation
or the correlation across scales.

Our compression algorithm works this way:

1. Use footprints on each line and on each column of the im-
age to detect singularities. Any singularity is characterized
by N + 1 footprint coefficients.

2. Chain the footprint coefficients to form curves. The chain-
ing of coefficients of the same order gives an edgeprint.
Each curve generates N + 1 edgeprints.

3. Treat each edgeprints as a 1-d signal and compress it using
footprints.

4. Compress the information related to the geometry of the
curve using a sort of vertex-based shape coding [7]

The decoder first reconstruct each edgeprints, then locate
each of them in the right position using the geometrical in-
formation.

5. SIMULATION RESULTS

Denoising: The denoising algorithm presented in Section
3 is based on critically subsampled footprints. That is, on
footprints built on critically subsampled wavelet coefficients.
We have also performed an extension of this denoising al-
gorithm to the case of non-subsampled footprints. For lack
of space we have not presented this extension here, but we
will include this system in our simulation results.

In Table 1 we compare the performance of our denois-
ing systems against a classical hard thresholding algorithm
[2] and against cycle-spinning [1]. In this experiment we
consider piecewise linear signals with no more than three



discontinuities. The performance is analyzed in function of
the size T of the signal. The table clearly shows that sub-
sampled footprints system outperforms hard thresholding
system, while non-subsampled footprints outperform cycle-
spinning. In Fig 1, we show an example of the denoising
algorithm.

T 64 128 256 512
Subsampled

Footprints 16.2dB | 18.5dB | 19.8dB | 22.1dB
Hard

Thresholding 12.9dB | 15.2dB | 16.6dB { 19dB
Cycle

Spinning 16.3dB | 18.6dB | 20.3dB | 22.9dB
Non-Subsampled

Footprints 17.1dB | 19.6dB | 21dB | 23.2dB

Table 1. Piecewise linear signals with four different polynomials.

;
b

5o 700 180 20 B0 OF
Moy egral (138 cm

50 100 150 200
Yacd B

L}

% Vo0 180 B0 B0
Cyche epin. (189 a8)

50 100 150 200 250
Foprs (19.308)

Fig. 1. SNR results. a) Original Signal. b) Noisy Signal (13.8dB).
¢) Hard Th. (16.4dB). d) Subsampled Footprints (19.3dB). €) Cy-
cle Spin. (18.9dB). f) Non-Subsampled Footprints (20.9dB).

Compression: To show the potentialities of edgeprints, we
show this simple experiment. Consider the image shown in
Fig. 2(a). It is composed of three constant regions separated
by two smooth curves. In one of the regions we have added
“texture”, which is simply represented by additive noise.
The edgeprints generated by the two curves are approxi-
mately piecewise constant and constant. The coder com-
press the two edgeprints using footprints and then sends,
as geometric information, the coordinates of few points of
the curves. The decoder reconstruct the curves approximat-
ing them with piecewise linear functions. In this case the
coder approximates the smooth curve with six points and
the straight curve with two points. For the texture, the coder
estimates the variance of the noise and send a quantized ver-
sion to the receiver. The decoder generates locally the noise
with the quantized version of the variance. In Fig. 2(b)
we show the approximation of the original image obtained
using edgeprints (before compression) and in Fig. 2(c) the
error image. As expected the edgeprints well approximate
the smooth behaviour of the signal. The error image just
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contains texture. The effect of compression is finally shown
in Fig. 2(d).

The problem of finding the right allocation of bits to
code the geometrical information, the edgeprints and the
texture is a topic under investigation.

80 100 120

20 60
n) Originat Image

Fig. 2. Compression using Edgeprint: a) Original image, b) Ap-
proximation with Edgeprints, ¢) Residual Image, d) Compressed
Image (bit budget=154, SNR=25.1dB).

6. CONCLUSIONS

In this paper we have proposed a new denoising algorithm
based on footprints. The main innovation of this algorithm
is that footprints are chosen according to the estimated dis-
tance between singularities. Moreover, we have investigated
a possible generalization of footprints to the 2-D case. First
experimental results are promising.
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