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Abstract- This paper presents an overview of some of the recent the- 
ory and application of stochastic minimal graphs in the context of entropy 
estimation for imaging applications. Stochastic graphs which span a set 
of extracted image features can be constructed to yield consistent estima- 
tors of Jensen's entropy difference for between pairs of images. Unlike 
traditional plug-in entropy estimates based on density estimation, stochas- 
tic graph methods provide direct estimates of these quantities. We review 
the stochastic graph approach to entropy estimation, compare convergence 
rates to that of plug-in estimators, and discuss a geo-registration applica- 
tion. 

I .  INTRODUCTION 

Let Z be a stochastic image and let feature vectors 
2(l), . . . , Z(") be extracted from this image. We focus on the 
case that the feature vectors are i.i.d. realizations of a random 
variable 2 generated by a feature density f(2). This is appro- 
priate for piecewise homogeneous images from which repeated 
feature vectors can be sampled from a homogeneous region of 
the image. Examples of such a feature vector are: the position 
and orientation of an edge; a vector of samples in a textured re- 
gion; the output vector of a spatial innovations filter; etc. This 
paper is concerned with estimating the joint a-entropy (see (1)) 
of the feature vector density based on feature samples extracted 
from the images. 

Entropy estimation is of interest for pattern analysis, image 
complexity assessment, model identification, tests of indepen- 
dence, and other applications where invariance to scale, trans- 
lation and other invertible transformations is desired in the dis- 
criminant. It was shown earlier [7] that minimal graphs such as 
the minimal spanning tree (MST) could be used to come up with 
direct estimates of a-entropy without requiring the difficult step 
of density estimation. This paper expands on this approach with 
special emphasis on imaging applications. 

The results presented here can also be applied to index- 
ing and content-based retrieval of images using entropic mea- 
sures of distance between a query image having feature den- 
sity fo and a database of images having feature densities 
{fi}. For example the a-divergence D a ( f l l l f o )  = (a - 
1)-l I n s  fP(~)f;-~(z)dz converges to the Kullback-Liebler 
(KL) divergence as a -+ 1, which has been proposed for reg- 
istration and indexing of images [lo]. When fo is known the 
a-divergence can be directly estimated by minimal graph meth- 
ods similar to those presented below using the measure trans- 
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formation method outlined in [6] .  However, for unknown f o  
and unknown fl the existence of consistent minimal-graph es- 
timators of D a ( f i  Ilfo) is an open problem. This paper will be 
concerned with an alternative dissimilarity function, called the 
a-Jensen difference, which is a function of the joint entropy of 
20 and 21. As will be shown below, this function can be esti- 
mated using minimal graph entropy estimation techniques and 
behaves similarly to the a-divergence. 

11. ENTROPY ESTIMATION 

Let 2 be a feature vector in Rd with j.p.d.f f(2). Assume that 
f has bounded support. The a-entropy, also known as RCnyi 
entropy is defined as 

This entropy function converges to the Shannon entropy 
- J f ( z )  In f(z)dz as a 4 1. 

Most non-parametric entropy estimation techniques are based 
on estimation of the density function followed by substitution 
of these estimates into the entropy functional (1). For example, 
when this plug-in technique is applied to a-entropy it yields 

where f is an empirical estimate of the density. For the special 
case of estimation of Shannon entropy recent non-parametric es- 
timation proposals have included: histogram estimation plug- 
in kernel density estimation plug-in and sample-spacing density 
estimator plug-in. The reader is referred to [3] for a compre- 
hensive overview of previous work in non-parametric estimation 
of Shannon entropy. The main difficulties with non-parametric 
methods are due to the infinite dimension of the spaces in which 
the unconstrained densities lie. Specifically: density estimator 
performance is poor without stringent smoothness conditions; 
no unbiased density estimators generally exist; density estima- 
tors have high variance and are sensitive to outliers; the high 
dimensional integration required to evaluate the entropy might 
be difficult. 

The problems with the above methods can be summarized by 
the basic observation: on the one hand parameterizing the scalar 
entropy functional with an infinite dimensional density function 
is a costly over-parameterization, while on the other hand artifi- 
cially enforcing lower dimensional density parametrizations can 
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produce significant bias in the estimates. This observation has 
motivated us to develop direct methods which accurately esti- 
mate the entropy without the need for performing artificial low 
dimensional parameterizations or non-parametric density esti- 
mation [5], [7], [6]. These methods are based on constructing 
minimal graphs spanning; the feature vectors in the feature space. 
The overlall length of these minimal graphs can be used to con- 
struct a strongly consistlznt estimator of entropy for Lebesgue 
continuous densities. In particular, let 2(%) = { Z ( l ) ,  . . . Z(.)} 
and define 

(3) 

the overall length of a graph spanning n i.i.d. vectors 2( ' )  in 
R' each with density f. Here y E (0 ,d)  is real, e are edges 
in a graph connecting pairs of Z(')'s, le1 denotes Euclidean ( l a )  
norm of the edge, and the minimization is over some suitable 
subsets 7, e.g. spanning trees, of the ( y )  edges of the complete 
graph. Examples include the minimal spanning tree (MST), 
Steiner tree (ST), minimal matching bipartite graph, traveling 
salesman problem (TSP). The asymptotic behavior of L 7L over 
random points 2(%) has been studied for over half a decade [2], 
[ 1 I]. When the graph 7 is "quasi-additive" we showed in [7] 
that 

I?,(z(")) = In ~ , / n "  - In pL,7 (4) 

is an asymptotically unbiased and almost surely consistent esti- 
mator of the un-normalized a-entropy off  where a = ( d - y ) / d  
and D L , ~  is a constant bias correction depending on the graph 
minimization criterion, e.g. MST, ST or TSP, but independent of 
f. Consistency (4) also holds when the power exponent function 
1.17 in (3) is replaced by a positive function .g(lel) which locally 
behaves as /el^( as (el + 0 [ I  11. The fact that (4) holds for any 
quasi-additive graph construction opens the possibility of many 
different types of consistent graph-based entropy estimation al- 
gorithms. However, among the currently known quasi-additive 
algorithms the MST is the fastest (with polynomial run time) 
and as such it has been adopted for all of our entropy estimation 
applications. 

Optimal pruning of these minimal graphs can robustify the 
entropy estimator against outliers from contaminating distribu- 
tions. Divergence D, (fi I l f ~ )  between the observed feature den- 
sity f and a reference feature density fo can be estimated sim- 
ilarly via performing a pri-processing step before implementing 
the minimal-graph entropy estimator. This preprocessing step 
applies a measure transformation on the feature space which 
converts the reference density to a uniform density over the unit 
cube as explained in [6]. 

As contrasted with density estimation techniques of entropy 
estimation minimal graph entropy estimators enjoy the follow- 
ing properties: they have faster asymptotic convergence rates, 
especially for non-smooth densities and for low dimensional 
feature spaces; they completely bypass the complication of 
chosing and fine tuning parameters such as histogram bin size, 
density kernel width, complexity, and adaptation speed; the a 
parameter in the a-entropy function is varied by varying the 

interpoint distance measure used to compute the weight of the 
minimal graph. On the other hand, the need for combinatorial 
optimization is a bottleneck for large number of feature sam- 
ples. This has motivated the development of greedy minimal 
graph approximations that preserve advantages such as robust- 
ness against outliers [7]. 

111. ENTROPY ESTIMATOR CONVERGENCE COMPARISONS 

Here we compare asymptotic convergence rates of the direct 
minimal-graph entropy estimator (4) and the indirect density 
plug-in entropy estimator (2) as a function of the number n of 
i.i.d. samples of 2. For proofs of the following propositions see 
[4]. Let 2 E R' have joint Lebesgue density f. Define the class 
of Holder continuous functions C ' ( K ,  c )  over R' 

C ' ( k  c )  = { f(.) : Ilf(.) - Pl"J(Z)II 5 c 11. - zll"} 

where ( z )  is the Taylor polynomial of f of order k expanded 
about the point z. As K. becomes large the class C ' ( K ,  c) con- 
tains functions which are increasingly non-smooth. 

For the indirect estimator (2) it makes sense to consider a min- 
imax optimal density estimation strategy which minimizes the 
worst case estimator mean integrated square error (MISE) over 
the densities lying in C ' ( K . ~  c)  [8]. The minimax estimator can 
be implemented as a piecewise polynomial with bin size that 
decreases in n at a specified optimal rate. The resultant MISE 
has the fastest possible rate of convergence over all C ' ( K ,  c) and 
the rates of convergence of the squared bias and the variance are 
identical. 

Proposition I :  Assume that the Lebesgue density f is sup- 
ported on the unit &dimensional cube [0,1] ', f E C ~ ( K . ,  c )  and 
that fa-1 (z)dz < CO. Then, if f is a minimax MISE density 
estimator 

where CK,c is a constant dependent on f. 

While not needed for the comparison performed below, it fol- 
lows from Appendix A that the worst case estimator MSE for 

minimax estimation supfEC,(n,c) 

has rate of convergence n-K/ (an+d) .  

For the direct minimal-graph estimator (4) convergence rates 
are more difficult to establish. The convergence of quasi- 
additive minimal graphs has been studied for a large number of 
problems including minimal spanning trees, Steiner trees, and 
the traveling salesman problem [l 11 The following specifoes the 
convergence rate of such estimators 

Proposition2: Assume that the Lebesgue density f over 
[0, 13' satisfies the property that f" is of bounded variation for 
all v E (0, l )  and that f- l / ' (z)dz < CO. Then ford 2 2 

(E[k,(2("))1 - H,(f)J = n-l'd K L , y ( l  + o(1)) 
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where KL,-(( f) is a constant depending on) f .  

Observe that as compared to Proposition 1 &the convergence 
rate in Proposition 2 only depends on the weaker condition of 
bounded variation of f .  A comparison between the convergence 
rates of the two propositions indicates that the direct estimator 
converges with faster asymptotic rate in T L  when: 

d 
K < -  

d'- 2 

Thus the direct estimator always has faster convergence than the 
indirect estimator when d = 2, i.e.. the feature vector 2 lies in 
the plane, or when d > 2 but K is large, i.e. f is non-smooth. 

A. Estimation of cu-Jensen Difference 

Let fo and fl be two densities and P E [O: 11 be a mixture 
parameter. The a-Jensen differenceis the difference between 
the a-entropies of the mixture f = Pfo + (1 - P)f1 and the 
mixture of the a-entropies of f o  and f l  111: 

(5) 
A 

AHa(P; fo; f l )  = 
H a ( P f o  + (1 - P)f l )  - [PHu( fo )  + (1 - P)Ha(fl)l; 

For cy E [O; 11 the a-Jensen difference is a measure of dissimi- 
larity between fo and f l :  as the a-entropy H a ( f )  is concave in 
f it is clear from Jensen's inequality that AH,(p ,  fo :  fl) 2 0 
with equality iff fo = fl  a.e. 

The a-Jensen difference can be motivated as an index func- 
tion for content-based retrieval and image registration as fol- 
lows. Assume that two sets of labeled feature vectors 20 = 

images 1, and Z1, respectively. Assume that each of these 
sets consist of independent realizations from densities fo and 
f l ,  respectively. Define the union Z = 20 U 21 containing 
T L  = no + 711 unlabeled feature vectors. Any consistent entropy 
estimator constructed on the unlabeled Z( ' ) ) ' s  will converge to 
H,(Pfo + (1 - p)f1) as T L  + m where P = lirri?L+m T L ~ / T L .  

This motivates the following consistent minimal-graph estima- 
tor of Jensen difference (5) for f l  = n o / r i :  

(2, (4 }%=I ,..., no and Z1 = {Zi i ) } ,= l  ,,.., nl are extracted from 

(6) 
a f": f l )  = 

ri,(Zo U 21) - [ P F i , ( 2 o !  + (1 - P ) f i a ( 2 1 ) ]  . 

where fi,(20 U 2,) is the minimal-graph entropy estimator (4) 
constycted onthe n point union of both sets of feature vectors 
and H,(2o),  H,(Z1) are constructed on the individual sets of 
710 and T L ~  feature vectors, respectively. We can similarly define 
the density-based estimator of Jensen difference based on en- 
tropy estimates of the form (2) constructed on 20 U &, 20 and 
z1. 

For some indexing problems the marginal entropies 
{ H Q ( f z ) } E = l  over the database are all identical so that the in- 
dexing function {H,(Pfo + (1 - P)fz)}5'=, is equivalent to 
AH,(p,  fo ,  f%)},"=,. The problem of registering a query image 
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to a database of images which are generated by rigid transfor- 
mations of a reference image is an important example of this 
simplifying situation. 

IV. GEO-REGISTRATION APPLICATION 

The objective is to register two types of images - a set of 
electroioptical (EO) images and a terrain height map. For this 
multisensor image registration problem, there usually exist dis- 
tortions between the two types of images. The distortions are 
due to difference acquisition conditions of the images such as 
shadowing, diffraction, terrain changes over time, clouds block- 
ing the illumination sources, seasonal variations, etc. Existence 
of such differences between the images to be registered requires 
that the registration algorithms to be robust to noise and other 
small perturbations in intensity values. 

For this image registration problem the set of EO images are 
generated from the a priori digital elevation model (DEM) of 
a terrain patch (the terrain height map) at different look angles 
(determined by the sensor's location) and with different lighting 
positions. 

Geo-registration of a EO reference image to DEM's in an im- 
age database is accomplished by selecting a candidate DEM 
image from the database and projecting it into the EO image 
plane of the reference image. The objective is to find the correct 
viewing angle such that the corresponding EO image is the best 
match to the EO reference image. Figure 1 shows an DEM pro- 
jected into the EO image plane with viewing angles (290, -20, 
130) and the reference EO image. Clearly they are not aligned. 

Fig. 1 .  Misaligned EO and reference images 

For matching criterion we implemented the cy-Jensen differ- 
ence applied to grey level features extracted from the refer- 
ence images and candidate EO images derived from the DEM 
database. The parameter cy was chosen arbitrarily as 0.5, cor- 
responding to a MST construction minimizing the Euclidean 
norm in (3) without any power weighting (y = 1). For illus- 
tration purposes we selected a very simple set of features via 
stratified sampling of the grey levels with centroid refinements. 
This sampling method produces a set of n three dimensional 
feature vectors 2, = (z%, yz, F(z , ;  yz)) where F ( z :  y) is a sam- 
ple of the grey level at planar position 2, y and where n is fixed 
in advance. The points {(xi ,  yz)}Zn_l approximate the centroids 
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of Voronoi cells and {F(z , ,  y2)}y=l correspond to the set of 71 

samples of the image from which we could reconstruct the orig- 
inal image with minimurn mean square error. For more details 
see 191. When the union of features from reference and target 
images are rendered as points in three dimensions we obtain a 
point cloud of features over which the MST can be constructed 
and the Jensen difference estimated. Since n l  = no = 71 we 
have used p = 1/2 in the Jensen difference (6). 

Figure 2 illustrates the IMST-based registration procedure over 
the union of the reference and candidate image features for mis -  
aligned images, while Figure 3 shows the same for aligned im- 
ages. From Figures 2(a) and 3(a) we see that for misaligned 
images, the representation points “x” and “0” are at larger dis- 
tances, giving corresponding larger MST weight, than those for 
aligned images. 

We repeat this MST construction process over the union of 
reference features and features derived from each of the images 
in the DEM database. The MST length can then be plotted in 
Figure 4. The x-axis stands for the image index, which corre- 
sponds to the viewing angles from the aircraft. The minimum 
MST length indicates the best matching of the EO image and 
the reference image, which corresponds to the registered pair in 
Figure 5. 
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Fig. 2. MST demonstration for misaligned images 
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Fig. 3. MST demonstration for aligned images. ‘k” denotes reference while 
“0” denotes a candidate imaga in the DEM database. 

i’”l c 20 

MST demonstration 

0 3w 

5800r- I 

(a) Matching image (b) Reference image 

Fig. 5. Co-registered EO-temin maps 
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