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ABSTRACT

‘We propose a non-parametric texture modeling and synthesis tech-
nique based on the integer version of the Discrete Wavelet Trans-
form (DWT). The successive levels of the DWT pyramid of the
input texture are progressively sampled starting from the signal
approximation to generate the analogous wavelet pyramid for the
synthetic texture. An underlying statistical model is assumed, where
the appearance of wavelet coefficients at each scale is conditioned
by the appearance of the corresponding ancestors at coarser scales.
A non-parametric Parzen estimator is used for sampling. The in-
teger DWT is obtained by the lifting steps implementation. The
proposed method provides results comparable to the other state-
of-the-art techniques for random (unstructured) textures, but at a
very low computational complexity. For structured textures, per-
formance depends on the specific orientation features and structure
size.

1. INTRODUCTION

Image modeling is the core of perceptual image processing. The
potential of this bridging discipline towards physiology is enor-
mous. The ability to describe an image in terms of those parame-
ters that are relevant for visual perception would not only support
a great number of applications in the fields of telecommunications
and multimedia, but also provide feedback to physiological inves-
tigation. Neurophysiological evidence has shown that the Human
Visual System (HVS) performs a multiresolution analysis of the
visual stimuli. The receptive fields of simple cells are localized in
space and time, have band-pass characteristics in the spatial and
temporal frequency domains, are oriented, and are often sensitive
to the direction of motion of a stimulus [1, 2]. Several probabilistic
texture models have grown on the insights coming from neural sci-
ences. Among the most relevant are the ones proposed by Portilla
and Simoncelli {31, Zhu {4], and De Bonet [5, 6].

In this paper we aim at investigating the exploitability of a sim-
ple and low complexity subband decomposition the integer DWT,
in the framework of perception-based texture modeling. Even though
such critically sampled transformation selecting only three fixed
orientations is not suitable for mimicking the HVS, it has proven to
be well representative of some texture classes, and thus very useful
for applications aiming at the visually lossless representation of a
given reference texture. A typical example is model-based coding,
where the goal is to increase the compression efficiency by replac-
ing the “real” information by some synthetic version producing the
same visual effect [7].
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Our method is inspired by the non-parametric multi-scale sta-
tistical model for natural images presented in [5, 6]. What we
have retained of this method is the high-level procedure, mean-
ing the idea of using the original texture as model and directly
sample its multiresolution features to progressively build a per-
ceptually equivalent multiscale representation of the synthetic tex-
ture. The multiresolution sampling procedure is such that each
spatial frequency band of the synthetic image is obtained by sam-
pling, according to a predefined criterion, the corresponding spa-
tial frequency bands of the original texture. The criterion basically
consists in conditioning the sampling process on the occurrence
of local features at coarser resolutions. Our approach is different
from De-Bonet’s Multiresolution Probabilistic Texture Modeling
(MPTM) [5] in many respects. First, it is entirely based on the inte-
ger DWT transform [8]. This makes it particularly suitable for the
integration in a DWT-based coding system. No additional process-
ing would be required for the definition of the texture model, which
could then be classically encoded. Furthermore, the lifting steps
scheme asymptotically reduces the computational complexity by a
factor of 4 [9], and all the transform process can be performed with
integer arithmetic, which is quite advantageous for the implemen-
tation on a device. Second, one single pyramid is used for both
conditioning and sampling. We call it hyper-pyramid (HP) to em-
phasize that the three orientation subbands of each DWT level are
representative of one level of the analysis&conditioning pyramid.

This paper is organized as follows. Section 2 gives an overview
on MPTM approach. The proposed DWT-based method is pre-
sented in Sec. 3. Results are discussed in Sec. 4, and conclusions
are derived in Sec. 5.

2. MULTIRESOLUTION PROBABILISTIC TEXTURE
MODELING (MPTM)

The goal of probabilistic texture synthesis is to generate a new
image from a sample textures which is sufficiently different from
the original, yet appears to be generated by the same underlying
stochastic process. Basically, a good compromise must be reached
between a certain degree of randomization, which makes the syn-
thetic texture distinguishable from the original one, and the preser-
vation of the features which determine the visual appearance of
the texture. The solution proposed in [5, 6] simplifies this task
by synthesizing textures which look similar at low spatial reso-
lution, and then maintaining that similarity while progressing to-
wards higher frequencies. Accordingly, in the MPTM approach
the input image is first analyzed by measuring the joint occurrence
of texture discrimination features at different scales. Then, a new



texture is generated by sampling successive frequency bands from
the input texture, conditioned on the similar joint occurrence of
features at lower spatial frequencies. In [5, 6], the pyramid of the
original texture is constructed by means of a Gaussian kernel. We
will call it analysis pyramid. Then, the corresponding pyramid for
the synthetic texture - which we call synthesis pyramid - is built by
filling its levels starting from the coarsest resolution, with values
which are obtained by conditional sampling on the corresponding
levels within the analysis pyramid. In order to enclose enough
structural information in the conditioning procedure, a set of lo-
cal descriptors is derived for each level of the analysis pyramid by
applying a set of spatially selective filters. These could either cor-
respond to steerable filters [10] or to a filter bank of oriented first
and second Gaussian derivatives.
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Fig. 1. MPTM: General scheme.

A parent vector is defined in each point:
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where (IV + 1) is the number of pyramid levels, F{* is the fearure
image for orientation « and level [, and (M +1) is the total number
of orientations. A chain is defined across scales according to [6]:

p(V(z,9)) = p(Viv (z,9)) X p(Vn-1(z,)|Vn(z,y))
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where Vi(z,y) is the subset of the elements of V'(z,y) concern-
ing level I of the pyramid. The conditional distributions are esti-
mated from observations. In [6], the non-parametric Parzen esti-
mator [11] is used. Let W‘ be the part of the parent vector col-
lecting the features pertaining levels [ to k. Then, the conditional
probability of V;(z, y) is estimated from the data as:

p(‘ft(w,y)l‘j’v (z,y))
p(Vilz, y)[Vi¥, (z,v))
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where ¢ is the Parzen window function. The adopted definition
for the window consists in an (V + 1) x (M + 1)-dimensional
box. The returned value is a certain constant z (different from
zero) if the § vector falls inside the box pertaining to the V vector,
and zero otherwise. Due to the definition of ¢, sampling from
p(ﬁ(x,y)\ﬁ’il(z,y)) can be done as follows. First, determine
the set of all z’,y' such that:

(Vi (z,y), S (e’ y) = 2 3)

Then, pick from them to set Vi(z,y) = Si(z’,’). Equation (3)
is used to build the candidate set C;(z,y) for each sample of the
synthesis pyramid. In other words, the point in (z’, y') of the anal-
ysis pyramid is a candidate for sampling for (z, y) in the synthesis
pyramid if the parent vector of (2, y') falls inside the box pertain-
ing to (z,y). Due to the shape of the Parzen window, this amounts
to taking the distance between the corresponding elements of the
parent vectors, and to compare it to a predefined rhreshold value,
which represents the length of the box edge along the correspond-
ing axis. More formally:

Ci(e,y) = {(',y) : DV i(z,9), 5., ¥) < T} @

T; being the vector collecting the thresholds. The less-equal oper-
ator is intended to be applied to each vector element. The levels of
the analysis pyramid are then sampled uniformly from among all
regions having a parent structure which satisfies (4).

The generative procedure starts by filling the coarsest (low-
pass) subband of the synthesis pyramid by copying the correspond-
ing values within the analysis pyramid - or eventually tiling it in
case the texture to be generated has a larger size. The sampling
procedure is then successively applied to the lower pyramid levels.

3. DWT-BASED MPTM
The DWT-based approach is illustrated in fig. 2. The texture de-
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Fig. 2. DWT-based MPTP.
tails in each pyramid level are represented by the DWT wavelet co-

efficients, namely the analysis pyramid is replaced by DWT hyper-
pyramid. The conditioning hyper-pyramid has been collapsed on



the analysis one, which is thus used for both sampling and condi-
tioning. The reason behind this is that the role of the feature im-
ages (conditioning HP) is to maintain the cross-correlation among
subbands, representing different orientations, in order to preserve
the structure of the texture. The DWT details are suitable for this
purpose, even though probably not optimal. Figure 3 illustrates the
construction of the analysis&conditioning HP. The 1D version is
considered for simplicity of representation. In the block diagram,
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Fig. 3. DWT-based MPTP: analysis&conditioning HP.

DWT represents one level of transformation. The first DWT block
results in the coarsest scale approximation A% f and details D; f.
The DWT is iterated on the approximation A¢f, leading to the
next finer scale subbands A% f and D, f, etc.

The synthesis algorithm articulates as follows. Let NV be the
height of the HP (N = 4 in the example), and let { be the level
index. The signal approximation (! = NN) and the first level of
the HP (I = N — 1) are replicated in the synthesis HP. Levels
from [ = N — 2 are filled by conditional sampling. For each
level [, the three detail subbands are sampled together in order
to preserve inter-band dependencies. Depending on the texture
structure, it may be convenient to stop the sampling procedure at
a certain [ = [. In this case, the whole tree of descendants of each
coefficient, which is the outcome of the sampling, is replicated
in the synthesis HP. This corresponds to moving whole textural
units while preserving high frequencies. The main drawback is
that some blocking artifacts may appear, reflecting the pyramidal
structure of the decomposition.

3.1. Conditional Sampling

The choice of the threshold vector f‘. is crucial. Large values
would introduce a high level of randomization in the feature space,
which could compromise the preservation of the local structure.
Conversely, too small values would overconstrain the system and
result in just a local re-arrangement of the coefficients. The choice
of threshold values is what determines the performances of the
probability density estimator. As pointed out in [11], if the Parzen
window ¢ is too large, then the estimated distribution would be
a superposition of broad, slowly varying functions, corresponding
to a very smooth, “out-of-focus” estimate of the true distribution.
On the other end, highly peaked windows would generate a super-
position of sharp pulses located at the samples, leading to an “er-
ratic” noisy estimate of the distribution. In other words, in the first
case the estimate would suffer from too little resolution, and in the
second from too much statistical variability. If the power of non-
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parametric techniques is the ability to estimate a priori unknown
distributions (with enough samples, convergence to any distribu-
tion is ensured), the main limitation is that the number of necessary
samples may be very large. Furthermore, the demand for a large
number of samples grows exponentially with the dimensionality of
the feature space.

The parameter we have used as reference for the size of the
box along the axis v, corresponding to the feature image F, is
the unbiased estimation for the root mean square value:

o 1 o )2
4] =\/Wi—1§(ﬂ (z,y) — uf)

pf and N being the expectation value and the number of sam-
ples in F/*, respectively. These values do not ensure the preserva-
tion of the structure for any texture. In some cases, results can be
improved by an adequate weighting of the reference values. The
Parzen window is one of the core parameters of our approach, and
deserves further investigation.

&)

4. RESULTS AND DISCUSSION

The test set consists of some textures taken from the Brodatz al-
bum [12]. Additional artificial textures have been included for sake
of comparison with other methods [5, 13]. The limit on the number
of decomposition levels is set by both the size of the input images
and the length of the filters. For the examples shown it varies be-
tween N = 3 and N = 4 for original samples of 64 x 64 pixels
each, and between N = 4 and N = 5 for the 128 x 128 ones.
The integer version of the Daubechies’ (9,7) filter [8] is used. The
size of the Parzen window has been fixed according to eq. (5). The
visual quality of the resulting textures could be further improved
by a fine tuning of such a parameter.

Figures 4 and 5 illustrate performances. Fig. 4 (a) and (b) rep-
resent some natural textures. The first one is quite regular, and
features mainly horizontal and vertical structures, making it well
suited to the proposed approach. For these two samples, the syn-

Fig. 4. Synthesis results. First line: original images. Second line:
synthesized textures.

thesized images can be considered perceptually equivalent to the
originals . Fig. 4 (c) has pronounced directional features away
from the horizontal/vertical directions. These are not always cor-
rectly preserved. Fig. 4 (d) shows a synthesis result on a classical

No standardized psycho-physical evaluation has been performed.



Fig. 5. Texture extrapolation. The original texture is pasted at the center.

texton image. The textons are placed at independent random non-
overlapping positions within the image. Some artifacts are present
in the form of artificially generated gray levels that were absent
in the original bi-level image. This is due to the filtering process,
which expands the original number of gray levels. As previously
mentioned, the proposed algorithm is very easily extensible to tex-
ture extrapolation. In such case, each level of the synthesis HP has
a bigger size than the corresponding one in the analysis HP. In or-
der to fill the last levels (I = N, N — 1) of the synthesis HP, the
corresponding levels of the analysis HP are tiled. Figure 5 shows
some examples of texture extrapolation. The original sample is
pasted at the center, and the rest of the image is filled with the
synthetic texture. To our opinion, image 5(d) is particularly rep-
resentative of the MPTM philosophy: the synthetic image looks
like a wall built by a different arrangement of the bricks. Perfor-
mances can be improved by fine tuning of the parameters of both
the DWT (filter, depth) and the sampling. Among these, the shape
and size of the Parzen window and the level I, at which it may
be convenient to replace the sampling with the replication of the
descendants, are particularly important because they control the
degree of randomization introduced by the algorithm.

5. CONCLUSIONS

‘We propose a multi-resolution probabilistic texture modeling tech-
nique entirely based on the integer DWT. The input image is first
analyzed by measuring the joint occurrence of texture features at
multiple resolutions. Then, a new texture is generated by sampling
successive frequency bands from the input texture, conditioned on
the joint occurrence of similar features at lower spatial frequencies.
The core of the algorithm is the sampling procedure, controlling
the degree of randomization introduced in the feature space. Re-
sults on stochastic textures are comparable with other state-of-the-
art techniques. For structured textures, performance depends on
the orientation features and structure size. The low computational
complexity and the possibility of implementing the transform with
integer arithmetic make the proposed technique highly appealing
for many applications. We aim at integrating the DWT-based al-
gorithm within a model-based coding system.
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