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ABSTRACT 

The aim of this work was to develop a system based on 
modular neural networks and multi-feature texture analysis 
that will facilitate the automated interpretation of cloud 
images. This will speed up the interpretation process and 
provide continuity in the application of satellite imagery 
for weather forecasting. A series of infrared satellite 
images from the Geostationary satellite METEOSAT7 
were employed in this research. Nine different texture 
feature sets (a total of 55 features) were extracted from the 
segmented cloud images using the following algorithms: 
first order statistics, spatial gray level dependence matrices, 
gray level difference statistics, neighborhood gray tone 
difference matrix, statistical feature matrix, Laws texture 
energy measures, fractals, and Fourier power spectrum. 
The neural network SOFM classifier and the statistical 
K" classifier were used for the classification of the cloud 
images. Furthermore, the classification results of the 
different feature sets were combined improving the 
classification yield to 91%. 

1. INTRODUCTION 

Geostationary satellites have long been established as 
excellent cloud observing platforms for various 
meteorological applications, primary of which is short 
range weather forecasting. Cloud patterns observed from 
such satellites are interpreted from expert meteorologists 
and are used in conjunction with several other weather 
forecasting tools in their day-to-day practice [ 11. 

Clouds are customarily classified in three decks (etages): as 
Low, Medium or High, depending, among several other 
criteria, on the shape and distance of the cloud base from 
the ground. This kind of classification has been 
internationally agreed and used by meteorological services 
worldwide. The cloud identification, by using the 
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combined ground and satellite observations, is further 
complicated by the fact that the weather observers report 
cloud as seen from below, whereas, the satellite senses 
remotely the cloud from above. In order to avoid the 
confusion, which may arise because of this discrepancy, in 
this work, only areas on the satellite image with a single 
deck of cloud were analysed. 

Because the interpretation of satellite images by individual 
weather forecasters implies a high level of personal 
estimation and subjectivity, artificial neural networks [2] 
have been employed in previous work, in order to establish 
an objective methodology for such an interpretation 111, 
[3], [4]. Neural networks use in image texture analysis and 
in cloud classification has also recently been shown [5]. 

The findings in tlus work suggest that neural networks and 
multi-feature, multi-classifier analysis of satellite imagery 
provide a standardised and efficient way for classifying 
cloud types that can be used as an operational tool in 
weather analysis. 

In the current study, the modules of the automated system 
for cloud classification are the following: 
(i) Texture feature extraction, 
(ii) Classification using neural networks and statistical 
classifiers, 
(iii) Combining of the classification results. 

The system should be able to classify cloud images into 
one of the following six cloud types: altocumulus- 
altostratus (ACAS), cumulonimbus (CB), cirrus- 
cirrostratus (CICS), cumulus-stratocumulus (CUSC), 
stratus (ST) and clear conditions (CLEAR). Some of these 
cloud types like CUSC, ACAS and CICS are group-types 
representing clouds usually observed together. It should be 
emphasised that the labelling of the different cases was 
done by agreed combined ground and satellite 
observations. 



2. MATERIAL 

The satellite images used in this work consist of the 0000, 
0600, 1200 and 1800UTC images corresponding to the 
main synoptic observing times. The satellite images were 
contrasted to the: actual observations reported at the earth’s 
surface at the above times. These observations are plotted 
on the respective synoptic maps archived at the 
Meteorological Office Larnaka Airport in Cyprus. Using 
this standardizecl information from the human observers on 
the ground and the expertise of a meteorologist, cloud 
types were identified on the satellite images and classified 
manually accordingly. 

From a total number of 98 satellite images, 366 samples, 
representing six cloud types, were manually classified by 
the expert meteorologist. The cloud region of interest was 
manually outlined and saved for feature extraction. 

3. METHOD 

In the feature extraction module multiple texture features 
were extracted from the manually classified samples in 
order to be used for classification. Texture contains 
important infommtion, which is used by humans for the 
interpretation and the analysis of many types of images. 
Texture refers to the spatial interrelationships and 
arrangement of the basic elements of an image [6]. 
Visually, these spatial interrelationships and arrangements 
of the image pixels are seen as variations in the intensity 
patterns or gray tones. Therefore texture features have to 
be derived from the gray tones of the image. Although it is 
easy for humans to recognise texture, it is quite a difficult 
task to be defined, and subsequently to be interpreted by 
digital computers. 

For the satellite images used in this study, nine different 
texture feature sets (a total of 55 features) were extracted 
using the following algorithms. The features were 
normalised before use. 
( i )  First Order Statistics (FOS) [I]  
1) Mean value, 2) Median value, 3) Standard Deviation, 4) 
Skewness, 5 )  Kurtosis. 
( i i )  Spatial Gray Level Dependence Matrices (SGLDM) [SI 
I )  Angular second moment, 2) Contrast, 3) Correlation, 4) 
Sum of squares: variance, 5 )  Inverse difference moment, 6) 
Sum average, 7) Sum variance, 8) Sum entropy, 9) 
Entropy, 10) Difference variance, 1 1) Difference entropy, 
12), 13) Information measures of correlation. For each 
feature the mean values and the range of values were 
computed, and were used as two different feature sets. 
(iii) Gray Level Lbfference Statistics (GLDS) [9] 
1) Contrast, 2) Angular second moment, 3) Entropy, 4) 
Mean. 

(iv) Neighborhood Gray Tone Difference Matrix (NGTDM) 
[61 
1) Coarseness, 2) Contrast, 3) Business, 4) Complexity, 5 )  
Strength. 
(v )  Statistical Feature Matrix (SFM) [lo] 
1)  Coarseness, 2) Contrast, 3) Periodicity, 4) Roughness. 
(vi) Laws Texture Energy Measures (TEM) [ l l ] ,  [12] 
1) LL - texture energy from LL kernel, 2) EE - texture 
energy from EE kernel, 3) SS - texture energy from SS 
kernel, 4) LE - average texture energy from LE and EL 
kernels, 5 )  ES - average texture energy from ES and SE 
kernels, 6 )  LS - average texture energy from LS and SL 
kernels. 
(vii) Fractal Dimension Texture Analysis (FDTA) [ 12],[ 131 
H‘” parameter (Hurst coefficient) for resolutions k=l, 2,3.  
(viii) Fourier Power Spectrum (FPS) [9] 
1) Radial sum, 2) Angular sum. 

Following the texture feature extraction, classification was 
implemented using: (i) the neural network self-organizing 
feature map (SOFM) classifier [ 141, and (ii) the statistical 
K-Nearest Neighbor (K”) classifier. 

The SOFM was chosen because it is an unsupervised 
learning algorithm where the input patterns are freely 
distributed over the output node matrix [14]. The weights 
are adapted without supervision in such a way, so that the 
density distribution of the input data is preserved and 
represented on the output nodes. This mapping of similar 
input patterns to output nodes, which are close to each 
other, represents a discretisation of the input space, 
allowing a visualisation of the distribution of the input 
data. Figure 1 illustrates the distribution of each class on a 
12x12 SOFM using as input all the 55 features. The figure 
illustrates the high degree of overlap between some of the 
six different classes. 

The SOFM was trained for 5000 epochs with the 366 cloud 
patterns, and each pattern was assigned to one of the 144 
output nodes of a 12x12 matrix. Similar patterns were 
assigned to the same output node. The classification for 
each pattern was implemented based on the class label of 
the rest of the patterns assigned to the same node. So the 
test pattern was said to belong to the majority of the rest of 
the patterns assigned to the same node. Because in this 
work the number of patterns per class was unequal, a bias 
was created in favour of the classes with a large number of 
members. In order to alleviate the above bias, the number 
of counted patterns on the node for each class, was 
multiplied with a correction factor. The correction factor 
was computed as the total number of patterns, (i.e. 366) 
divided by the number of members of each class. Thus, 
classes with a smaller number of members were given a 
greater weight in the classification process. 
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The above procedure was repeated for each one of the 366 
cloud patterns, using as input vector the nine different 
feature sets, i.e. nine different SOFM classifiers were 
trained and evaluated. Furthermore, modular neural 
networks [ 151 were used and the nine classification results 
were combined using the following combining techniques: 
(i) majority voting, and (ii) weighted averaging. In the 
majority voting the input pattern was assigned to the class 
of the majority of the nine classification results. In the 
weighted averaging case, the six class percentages of the 
number of patterns per class assigned to the output node, 
were summed up for the nine classifiers sets. The input 
pattern was assigned to the class with the greatest 
percentage value. 
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For comparison reasons, the statistical k-Nearest Neighbor 
(KNN) classifier was also implemented and used for cloud 
classification. In the K" algorithm the k nearest 
neighbours of the test pattern 1 were identified, based on 
their Euclidean distance. Thedest pattern was assigned to 
the class of majority of its k neighbours. The classification 
was implemented in a similar.way to the SOFM classifier, 
using a correction factor and combining techniques. For the 
KNN classifier best results were obtained with k=3. 

4. RESULTS AND DISCUSSION 

Table I tabulates the classification results for the SOFM 
and the KNN classifiers, for the nine texture feature sets, 
their average and when combined with majority voting and 
with weighted averaging. In the SOFM case, the results 
tabulated are the average of three different runs in order to 
obtain a more reliable output. Best results were obtained 
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with the SOFM ,classifier, with average for the nine feature 
sets 62.0%, whereas the KNN classifier yielded 50.2%. 
Best feature sets were for the SOFM the SGLDM (mean) 
with 67.1%, foll,owed by the NGTDM with 64.8% and the 
SFM with 64.7%. For the KNN best feature sets were the 
SGLDM (mean) with 60.7%, followed by the FOS with 
57.9% and the NGTDM with 54.1%. The classification 
yield of the S8FM modular system was significantly 
improved to 78.6% when combined with majority voting, 
and 91.2% when combined with weighted averaging. For 
the KNN system the yield was also improved to 61.2% 
with majority voting, and 64.2% with weighted averaging. 
The significant improvement of the classification yield in 
the combined re!jults can be attributed to the relative large 
number of six classes. Due to that, misclassifications were 
distributed to a large number of classes and hence when 
combined easily compensated. 

CUSC 
ST 

Clear 

Table I Classification results of the cloud classification 
svstem. 

10.3 1.6 7.9 66.7 4.8 8.7 
0.0 ’ 0.0 0.0 0.0 88.2 11.8 
2.9 0.0 1.5 7.3 27.9 60.3 

I SLDM (mean) I 67.1 I 60.7 
(range) I 62.1 I 51.1 

SFM 52.2 
TEM 51.9 

FDTA 61.3 44.3 

I 1 Average 50.2 
I I I 

Combine with 

Combine with 

Table I1 Confusion matrix of the classification results 

Classified as I 

Table I1 tabulates a confusion matrix of the classification 
results for the SOFM classifier, for the SGLDM (mean) 
feature set which yielded the best results. As seen from the 
table the ACAS clouds were most often misclassified as 
CICS and vice versa, whereas the same occurred with the 

ST and the CLEAR classes. These results are in agreement 
with the pattern distribution displayed in Figure 1, and with 
the visual observation of the images. 

In conclusion, the results in this work show that texture 
features can be successfully used for cloud classification 
and that a relatively good clustering of the different classes 
is provided. In addition, modular neural networks with 
multiple feature sets and combining techniques can 
significantly improve the classification yield of the system. 

5. REFERENCES 

[I] Peak J.E., Tag P.M., “Towards automated Interpretation of 
Satellite Imagery for Navy Shipboard Applications’, Bulletin of 
the American Meteorological Society, Vo1.73, No.7, 995-1008, 
July 1992. 

[2] Haykin S., Neural Networks - A coniprekensive foundation, 
Macmillan College Publishing Company, 1999. 

[3] Bankert R.L., “Cloud Classification of AVHRR Imagery in 
Maritime Regions Using a Probabilistic Neural Network, 
Journal of Applied Meteorology, Vo1.33, No.8, 909-918, 
Aug. 1994. 

[4] Bankert R.L., Aha D.W., “Improvement to a Neural Network 
Cloud Classifier”, Journal of Applied Meteorology, Vo1.35, 
No.ll,2036-2039, Nov. 1996. 

[5] Tian B., Shaikh M., Azimi-Sadjadi M., Vonder Haar T., 
Reinke D., “A Study of Cloud Classification with Neural 
Networks Using Spectral and Textural Features”, IEEE 
Transactions on Neural Networks, Vol. 10, No 1, Jan. 1999. 

[6] Amadasun M., King. R., “Textural Features Corresponding to 
Textural Properties”, ZEEE Transactions on Systems, Man, 
and Cybernetics, Vol. 19, No 5, Sept./Oct. 1989. 

[7] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., 
Nunrerical Recipes. The Art of Scientific Coniputitig, 
Cambridge University Press, Cambridge, 1987. 

[8] Haralick R.M., Shanmugam K., Dinstein I. ,  “Texture Features 
for Image Classification”, IEEE Transactions on Sysfenis, 
Man., and Cybernetics, VolSMC-3, pp. 610-621, Nov. 1973. 

[9] Weszka J.S., Dyer C.R., Rosenfeld A., “A Comparative Study 
of Texture Measures for Terrain Classification”, IEEE Trans. 
on Systems, Man. & Cybernetics, Vol. SMC-6, April 1976. 

[IO] Wu Chung-Ming, Chen Yung-Chang, “Statistical Feature 
Matrix for Texture Analysis”, CVGIP: Graphical Models and 
h u g e  Processing, Vol. 54, No 5, pp. 407-419, Sept. 1992. 

[ l  I ]  Laws K.I., “Rapid Texture Identification”, SPIE, 2980, Vol. 

[12] Wu Chung-Ming, Chen Yung-Chang, Hsieh Kai-Sheng, 
“Texture Features for Classification of Ultrasonic Liver 
Images”, IEEE Transactions on Medical Imaging, Vol. 1 1, 
No 3, June 1992. 

[I31 M.andelbrot B.B., The Fractal Geometry of Nature, San 
Francisco, CA, Freeman, 1982. 

[ 141 Kohonen T., “The Self-organizing Map”, Proceedings of the 
IEEE, Vol. 78, No. 9, pp. 1464-1480, Sept. 1990. 

[ 151 Perrone M.P., “AveragingModular Techniques for Neural 
Networks”, The Handbook of Brain Theory and Neural 
Networks, ed. by M.A. Arbib, MIT Press, Cambridge, 
Massachusetts, pp. 126-129, 1995. 

238, pp. 376-380. 

500 


