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ABSTRACT

In this paper we propose to simultaneously detect lane and pave-
ment boundaries by fusing information from both optical and radar
images. The boundaries are described with concentric circular
models, whose parameters are compatible and will result in bet-
ter conditioned estimation problems than previous parabolic mod-
els. The optical and radar imaging processes are represented with
Gaussian and log-normal probability densities, with which we suc-
cessfully avoid the ad-hoc weighting scheme carried on the two
likelihood functions. The multisensor fusion boundary detection
problem is posed in a Bayesian framework and a joint maximuma
posteriori(MAP) estimate is employed to locate the lane and pave-
ment boundaries. Experimental results are shown to demonstrate
that the fusion algorithm outperforms single sensor based bound-
ary detection algorithms in a variety of road scenarios. And it also
yields better boundary detection results than the fusion algorithm
that took advantage of existing prior and likelihood formulations.

1. INTRODUCTION

Automated detection of lane and pavement boundaries is an en-
abling or enhancing technology in developing the next generation
of automotive systems. It will provide necessary information for
road departure or lane excursion warning, intelligent cruise con-
trol, and ultimately, autonomous driving.

In recently years, boundary detection has been broadly stud-
ied and many state-of-the-art systems for detecting and tracking
lane/pavement boundaries usea priori deformable templates (shape
models) to mathematically describe the appearance of these bound-
aries [1, 2, 3, 4]. The boundary detection approaches via deformable
templates outperform the conventional edge based techniques due
to their robustness to noise and their capability of rejecting false
boundaries (such as entry/exit ramps).

Kluge and Lakshmanan presented a deformable template algo-
rithm to detect lane boundaries in optical images [2]. Ma, Laksh-
manan, and Hero proposed an algorithm to detect pavement bound-
aries in radar images [3]. In both applications, the lane and pave-
ment boundaries were described with parabolic shape models and
the optical and radar imaging processes were represented by em-
pirical non-normalized matching functions and log-normal densi-
ties, respectively. The boundary detection problems were solved
by estimating the shape parameters with maximuma posteriori
methods.

In an extensive boundary detection experiment carried on a
large number of optical and radar images, it has been observed that
in some cases, single sensor based boundary detection algorithms
fail to correctly locate the lane or pavement boundaries due to poor
quality of the optical or radar images. The reason behind this fail-
ure is that a single sensor, either optical or radar sensor, limits
itself in the ability to sense and identify the relevant features in
varying environments. For example, the optical sensor is not able
to operate effectively in a poorly illuminated environment, while
the radar sensor can not distinguish the lane markers on the road.
To take advantage of the strengths (and overcome the weaknesses)
of both the optical and radar sensors, we propose to combine the
two different types of sensory data together since multiple sensors
will provide more information and hence a better and more precise
interpretation of the sensed environment.

In [4] we investigated a multisensor fusion technique to si-
multaneously detect lane and pavement boundaries in optical and
radar images. This fusion technique made use of existing prior
and likelihood models presented in [2, 3]. Since this fusion tech-
nique integrates information from both optical and radar images,
the boundary detection results were shown to be more accurate
and more reliable than single sensor based detection algorithms,
especially in an adverse environment.

Although the detection results of [4] remain promising, there
are some drawbacks that prevent us from getting the most out of
the fusion algorithm. First, since the parameters in the parabolic
shape model have different units and are of different orders of mag-
nitude, the MAP estimation problem is an inherent ill conditioned
problem[5]. To eliminate this inherent pitfall of the parabolic model,
in this paper we propose to use concentric circular shape models to
describe the lane and pavement boundaries. Circular shape models
lead to a better conditioned estimation problem due to the compat-
ibility of their parameters, namely, parameters share the same units
and are of the same orders of magnitude over ranges of interest.

Second, the existing optical likelihood function results in com-
plications in the joint estimation problem. The empirical match-
ing function used in the single optical sensor lane detection al-
gorithm [2] is not a valid likelihood function since it is not nor-
malized to a probability density function (pdf). In the radar and
optical fusion algorithm, the empirical function has to be carefully
weighted so that each sensor makes a balanced contribution to the
joint likelihood. In [4] we experimentally selected the weights
which yield reasonably good results, but this empirical matching



function make systematic and theoretically sound weight picking a
difficult task. Inspired by the log-normal radar imaging likelihood
function, we propose to model the optical imaging process as a
Gaussian process which leads to a well defined likelihood func-
tion that can be easily manipulated with the likelihood from the
radar sensor.

In the improved fusion algorithm proposed in this paper, we
employ concentric circular shape models to represent the lane and
pavement boundaries, and utilize the Gaussian and log-normal pdf’s
to describe the radar and optical imaging processes. This new fu-
sion algorithm is expected to yield a well conditioned estimation
problem and combines the optical and radar modalities both effec-
tively and efficiently.

2. CONCENTRIC CIRCULAR MODELS

In [5] we proposed using concentric circular shape models to de-
scribe the pavement boundaries in radar images, which resulted in
a better conditioned estimation problem than previous parabolic
shape models. In this paper, we shall use circular shape models to
describe both pavement and lane boundaries on the ground plane.
A typical road scenario can be modeled by an intersection of a
cone with two concentric circles (Fig. 1). The cone represents the
field-of-view of the sensor, and the two circles represent the left
and right pavement/lane boundaries.
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Fig. 1. A typical road scenario in a radar image

Assuming that the apex of the cone is at the origin(0; 0), we
represent the coordinates(x; y) of the pavement (lane) boundaries
by arcs of circles centered at(xc; yc) with radii a1 anda2 (a3 and
a4), respectively

(x� xc)
2 + (y � yc)

2 = (a1;2)
2 : (1)

Denote by�rc = fxc; yc; a1; a2g the shape parameters for the
pavement boundaries, and by�oc = fxc; yc; a3; a4g the shape
parameters for the lane boundaries. Note that the lane and pave-
ment boundaries share the same parametersxc andyc and the only
parameter that distinguishes the boundaries is the radiusai; i =
1; 2; 3; 4.

The domain of the optical image is a perspective projection of
the road scenario on the ground plane. To make the optical obser-
vation data accordant with the boundary shape models, we project

the optical image data onto the ground plane with the inverse per-
spective projection [6].

There are some prior constraints on the lane and pavement
boundary parameters: (1) the circles must intersect the cone; (2)
the host vehicle (the apex of the cone) is within the road; (3) the
lane is positioned inside the road region; and (4) the lane/pavement
width has to be within minimum and maximum limits. These con-
straints can be expressed by introducing the prior density on the
boundary parameters�c = f�rc; �ocg:
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where
c is a normalizing constant andIA(x) is an indicator func-
tion of setA,

IA(x) =

�
1; if x 2 A

0; otherwise

This prior pdf is simply a uniform distribution over the space of
feasible model parameters.

3. IMAGING LIKELIHOODS

3.1. Radar Imaging Likelihood

We model the radar imaging process by the log-normal pdf pre-
sented in [3]. For the radar imageZr, the radar imaging likelihood
is described using the conditional probability that the random field
Zr takes on a realizationzr (corresponding to the radar observa-
tion), given that the pavement boundary information�rc is known,
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3.2. Optical Imaging Likelihood

For a noiseless optical image containing ideal lane boundaries, the
gradient magnitudes at the pixels which lie on the boundaries have
the maximum value, and the gradient magnitudes taper to zero as
the pixels get further away from the boundaries. So the ideal gradi-
ent magnitudes constitute a tapered imageS(�oc). Define the taper
function

f(�; d)
4
=

1

1 + �d2
; (4)

where� is a constant which controls the effective width of the
taper function. Then the intensity value of the tapered image at the
pixel (x; y), S(�oc; x; y), can be written as

(�oc ; x; y) = A f(�; d1(x; y)) +A f(�; d2(x; y)) (5)

whereA is the maximum gradient magnitude andd1 andd2 are the
distances from the pixel(x; y) to the left and right lane boundaries,
respectively.



Given lane boundary shape parameters�oc, we assume that the
optical image gradient magnitudeGm is the ideal gradient magni-
tudeS(�oc) contaminated with additive white Gaussian noiseW o,

Gm = S(�oc) +W
o
; (6)

whereW o are i.i.d. Gaussian random variables with mean0 and
unknown variance�2. Thus the optical imaging process is a re-
alization of the conditional density of the optical random fieldZo

taking a realizationzo given the lane boundary information�oc .
This can be modeled as a Gaussian pdf,

p(zoj�oc) =
Y
(x;y)
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4. MULTISENSOR FUSION METHOD
— JOINT MAP ESTIMATE

Since the prior distributions of the deformation parameters and the
imaging likelihood functions are available, we shall pose the lane
and pavement boundary detection problem in a Bayesian frame-
work. The optical and radar fusion detection problem can be solved
by estimating the deformation parameters�c with the joint maxi-
muma posteriorimethod

�̂c = argmax
�
c

P (�cjzr; zo)

Utilizing the Bayes’ rule and the fact thatP (zr; zo) is fixed
by the observation, we have

�̂c = argmax
�
c

P (zr; zo; �c) (8)

By the chain rule of conditional probability,

P (zr; zo; �c) = P (�rc)P (zrj�rc)P (�oc j�rc ; zr)P (zoj�oc ; zr; �rc)
(9)

Since the radar and optical imaging processes are independent, the
optical parameters�oc are conditionally independent of the radar
observationzr given the radar parameters�rc , and the optical ob-
servationzo is conditionally independent of the radar observation
zr and radar parameters�rc given the optical parameters�oc , that is,

P (�ocj �rc ; zr) = P (�oc j �rc)
P (zoj �oc; zr; �rc) = P (zoj �oc) (10)

Combining Eqns. (8), (9) and (10) yields

�̂c = argmax
�
c

P (�c) P (zrj�rc) P (zoj�oc) (11)

5. EXPERIMENTAL RESULTS

We have implemented the proposed joint boundary detection algo-
rithm (11) to locate lane and pavement boundaries in registered op-
tical and radar images. We have also implemented the single sen-
sor based lane/pavement boundary detection algorithms for com-
parison. In the single sensor based algorithms, we also represent

the boundaries with circular shape models and describe the optical
and radar imaging processes with Gaussian and log-normal densi-
ties.

In Fig. 2 we show detection results for a pair of optical and
radar images of different qualities. The optical image is degraded
by the presence of snow. Wrong lane boundary detection result is
obtained when only the optical image is used (Fig. 2(a)). However,
the radar image still offers sufficient information to correctly de-
tect the pavement boundaries (Fig. 2(b)). In the fusion approach,
since we make use of information from both optical and radar sen-
sors to jointly detect the lane and pavement boundaries, the radar
image helps refine and improve the lane detection in the optical
images (Figs. 2(c) and (d)).

(a) Single sensor based de-
tection

(b) Single sensor based
detection

(c) Detection with fusion
method

(d) Detection with fusion
method

Fig. 2. Performance comparison of the fusion and single
sensor based methods

In Fig. 3 we show detection results for a pair of fair-quality
optical and bad-quality radar images. The single sensor based al-
gorithms do not operate well in either lane or pavement boundary
detection. Fig. 3(a) gives the lane detection result in the optical
image. The traffic sign to the right of the road misleads the al-
gorithm to produce boundaries curving to the left. In Fig. 3(b), a
homogeneous region to the left of the road results in wrong pave-
ment boundaries. Information from both optical and radar images
is explored in the fusion approach and the redundancy and com-
plementarity between the optical and radar sensors significantly
improve the boundary detection performance. In Figs. 3(c) and
(d), we show that satisfactory results have been achieved with the
joint boundary detection algorithm.

Since the parameters of circular shape models have the same



(a) Single sensor based de-
tection

(b) Single sensor based
detection

(c) Detection with fusion
method

(d) Detection with fusion
method

Fig. 3. Performance comparison of the fusion and single
sensor based methods

units and are of the same orders of magnitude, the estimation prob-
lems are much better conditioned than parabolic models. Take the
estimation problem in Fig. 3 as an example, the condition number
is 13:24 for the circular shape model and is8:68 � 106 for the
parabolic shape model.

In this fusion algorithm, the background noise levels are as-
sumed unknown in both radar and optical imaging likelihoods and
hence the MAP estimates of the shape parameters are log quadratic
in the observations for both modalities. Unlike in [4], the back-
ground noise level is assumed unknown in the radar imaging like-
lihood and known in the optical imaging likelihood and hence the
MAP estimates of the shape parameters are log quadratic in the
radar observations but linear in the optical observations. Since the
optical and radar imaging likelihoods proposed in this paper are
compatible, no ad hoc weighting scheme is necessary as in [4]. We
applied both fusion algorithms proposed in this paper and in [4] to
a database of 25 optical and radar image pairs obtained in various
illuminating environments. The average detection error standard
deviations are plotted in Fig. 4. Both Figs. 4(a) and (b) demon-
strate that the new fusion algorithm outperforms the previous fu-
sion algorithm in detecting the lane and pavement boundaries.

The experiments have demonstrated that circular shape models
and the newly formulated radar and optical likelihoods are indeed
successful in detecting lane and pavement boundaries.
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Fig. 4. Performance comparison of fusion algorithms

6. CONCLUSIONS

In this paper we propose a fusion technique to simultaneously de-
tect lane and pavement boundaries using information from both
optical and radar images. The fusion algorithm make use of circu-
lar shape models to describe the appearance of the boundaries so
that the parameter estimation problem is better conditioned than
previous widely used polynomial shape models. It employs Gaus-
sian and log-normal densities to represent the optical and radar
imaging processes, respectively. The boundary detection problem
is posed in a Bayesian framework and joint MAP method is uti-
lized to estimate the boundary parameters. Since both optical and
radar imaging likelihood functions are valid density functions, the
joint MAP estimate combines the two modalities effectively. Ex-
perimental results have shown that the proposed fusion algorithm
improves the boundary detection performance when either the op-
tical or the radar image is unable to provide sufficient information
by itself. Furthermore, the fusion method proposed in this paper
also outperforms the previous fusion algorithm in reducing the av-
erage mean squared errors in boundary detection.
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