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Abstract 

In this paper, we apply a knowledge-based segmenta- 
tion method developed for still and video images to the 
problem of tracking missiles and high speed projectiles. 
Since we are only interested in segmenting a portion of 
the missile (namely, the nose cone), we use our seg- 
mentation proceclure as a method of adapting thresh- 
olding. The key idea is to utilize a priori knowledge 
about the objects present in the image, e.g. missile 
and background, introduced via Bayes’ rule. Posterior 
probabilities obtained in this way are anisotropically 
smoothed, and the image segmentation is obtained via 
MAP classifications of the smoothed data. When seg- 
menting sequences of images, the smoothed posterior 
probabilities of past frames are used as prior distribu- 
tions in succeeding frames. 

Key words: Tracking, anisotropic diffusion, Bayesian 
st at istics, knowledge-based segmentation. 

1 Introduction 

In this note, we apply our knowledge-based segmen- 
tation method to  a tracking problem connected with 
missiles in the atmosphere and high speed projectiles. 
This method has already been successfully applied to 
the segmentation of SAR and MRI medical imagery 
[2, 61. 

Since noise is in general non-additive, anisotropic dif- 
fusion [4] and related techniques directly applied to  
the image do not produce satisfactory results. More- 
over, these techniques do not introduce prior informa- 
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tion about the number of objects present in the scene 
when directly applied in the image space. In our ap- 
proach, we combine Bayes’ rule with anisotropic diffu- 
sion, introducing a priori knowledge into the segmen- 
tation process and solving the non-additivity problem 
of the noise. We also extend this approach to the seg- 
mentation of video data, incorporating basic learning 
capabilities to the knowledge. 

In the case of tracking missiles, we are interested in 
tracking the location of the nose of the missile. Thus 
we only need to separate the relevant portion of the 
missile from the background. Because of the noisy 
nature of the images due to atmospheric effects sim- 
pler thresholding techniques (e.g., histogramming the 
pixel distributions and trying to separate the peaks) 
do not work very well for the missile videos. On the 
other hand, we have found that the knowledge-based 
approach of [2, 61 applied to two classes gives a type 
of adaptive thresholding which is shown here to work 
quite well with the data sets that we tried. 

2 Basic Set-up 

Our set-up begins with the assumption that the image 
is composed of n classes of objects. For sequences of 
images, this value n is assumed constant. In this pa- 
per we will assume two classes, corresponding to the 
missile and the background. Thus in this setting we 
will see that we have a form of adaptive thresholding. 
The technique however is general and can be applied to 
any number of classes. In [2, 61, this number of classes 
was three. The goal of our segmentation is to deter- 
mine to  which class each pixel in each image belongs. 
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Our basic model assumes that the value of each pixel 
in a given class can be thought of as a random variable 
with a known distribution, and that these variables are 
independent across pixels (this just simplifies the ex- 
position, but any distribution can be used). Thus, for 
example for the case of normal distributions the like- 
lihood of a particular pixel i having a certain value 'o 

given that it is in class c E {missile, background} is: 

Pr(K = I J ~ C ~  = c )  = - 1 exp (--;) 1 ( I J - P  ) 2  (1) 
6 0 ,  2 uf 

where i is an index ranging over all pixels in the mis- 
sile image, Vi is the value of the pixel, and C, is its 
class. As usual, pc and uc denote the mean and stan- 
dard deviation of class c; these are assumed known. In 
practice, these parameters are estimated from a set of 
sample images or learned from past frames for video 
data. 

Next, we assume that there is some known prior prob- 
ability that a particular pixel will belong to a certain 
class. For single-image data sets, we assume a homo- 
geneous prior, i.e., that Pr(Ci = c )  is the same over all 
spatial indices i. It is, however, possible to incorporate 
a priori knowledge about the image here, for example 
if it were known that the missile is more likely to be 
near the center of the image than near the edge. For 
sequences of images, we have used a learned prior, as 
described below. 

Given a set of intensity distributions P r ( x  = vlC, = e) 
and priors Pr(C, = e ) ,  we can apply Bayes' Rule from 
elementary probability theory to  calculate the posterior 
probability that a given pixel belongs to a particular 
class, given its intensity: 

Pr(V, = w[C, = e) Pr(C, = c) 
E, Pr(& = vlC, = y) Pr(C, = y) ' 

Pr(Cz = c[v, = U )  = 

Our proposed approach is to calculate the posteriors 
P," := Pr(C, = clV, = IJ) using the given distributions 
arid (2) above, and then to apply anisotropic smoothing 
to each P" (note that the denoniiriator is just a nornial- 
ization constant that can be "ignored"). Specifically, 
we have chosen to smooth by evolving Pc according to 
a discretized version of the partial differential equation 

a PC - = ((P,C)"p,", - 2P,cPyPp,y + (Pp,")V,CY)1'3. 
at (3) 

This equation defines the affine geometric heat flow, 
under which the level sets of Pc undergo affine curve 

shortening. This particular diffusion equation was cho- 
sen because of its affine invariance, because it preserves 
edges well, and because of its numerical stability and 
ease of computation. See [I, 51 for details and other 
applications of this filter. The goal of this process is t o  
diffuse information from one pixel t o  the other, making 
then a region-based (adaptive) decision and not just a 
local pixel-wise one. 

The segmentation is then obtained using the maxi- 
mum a posteriori probability estimate after anisotropic 
smoothing. That is, 

arg max Ct = Pr*(Ci = c[V, = IJ) (4) 
c E {missile, background} 

where Pr*(Ci = clV, = IJ) is the smoothed posterior 
probability. 

3 Video Data 

When segmenting sequences of images, we have ex- 
tended the model so that information from one frame is 
used in the segmentation of the next, and in this way 
have introduced a kind of learning into the method. 
There are a number of ways in which this can be done. 
By far the most effective way we have found is t o  mod- 
ify our assumption of homogeneous priors. In partic- 
ular, we have used the smoothed posteriors P c  from 
one frame as priors Pr(C, = c )  in the segmentation 
of the next frame. We have also tested relaxing our 
assumption that the pixel intensities are distributed 
according to fixed normal distributions. We estimated 
the distribution parameters of the normal distributions 
from frame to frame by calculating new sample means 
and variances based on the segmentation of earlier im- 
ages. Finally, we completely removed the assumption 
that the intensities are normally distributed. This was 
done by calculating the sample distribution of intensi- 
ties within each class as images were segmented, and 
then using this distribution as Pr(V, = ulC, = e)  in (1) 
when segrrieritirig succeeding frames. 

4 Examples 

The image data which we used is stored as 16 bit float- 
ing point data. The data was scaled to range between 
0.0 and 255.0. The data was created using a the wave 
optics siniulatiori package which simulates the distor- 
tion of tracking a high speed projectile through the 
atmosphere. 
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In order to get initial estimates for pc and U", a few 
images were segmented by hand. Once areas of each 
image were identified as either missile, or background, 
the sample mean and standard deviation of the values 
of the pixels in these areas were calculated. These val- 
ues were then used for pc and cc in (1) and (2). We 
found that a single set of values for the parameters pc 
and uc worked well for many different image sets. The 
values used in the segmentations below were: 

Next, values,for Pr(C, = c)  were chosen. We have 
found that the segmentation process is quite robust 
with respect to these values. In fact, Pr(C, = c) E f 
provided satisfactory results. However, when segment- 
ing sequences of images, significant gains in speed are 
possible through the use of adaptive priors, as de- 
scribed above. 

To segment the initial image, the data was read and 
scaled. The image itself was then smoothed directly 
by applying (3) for a small number of iterations, typi- 
cally three. Next, the posterior probabilities were cal- 
culated using (1) a.nd (2), and the parameter estimates 
(5),(6) above. The posterior probabilities P" were then 
smoothed using (3) for a number of iterations. In gen- 
eral, after the smoothing, the probabilities need to be 
scaled back to add to  one. That is, the diffusion pro- 
cess does not guarantee to preserve the L1l norm of 
the vector. On the other hand, this is not necessary for 
the present case of just two classes, the process guaran- 
tees that the images remain legal posterior probability 
functions, meaning they are positive arid add to one. 
For more than two classes, if needed, we can replace the 
particular anisotropic diffusion process here used by a 
slight modification of it that also guarantees the preser- 
vation of the vector as a probability one, without the 
need for an explicit re-normalization; see [3]. Four it- 
erations was the average number required to produce a 
good result. Whenever (3) was applied, the maximum 
time step which ensures numerical stability was used. 
The final step in the calculation was to use (4) to de- 
termine the class of each pixel. The results were saved 
as images so that they could be compared visually to 
the original. 

To segment a sequence of images, the first image in 
the sequence was segmented as above. The smoothed 
posterior probabilit,ies P" were then used as prior prob- 
abilities in the segmentation of the second image, and 
similarly for all succeeding images. Some of the results 
are given below in figures (1) through (6). In each 

case, the position of the nose (and several other key 
points) are indicated 011 the original data for compari- 
son with the segmented data. Since the original data is 
synthetic, these points can be determined exactly from 
the undistorted images. These are taken from a data 
set of 300 images. We were able t o  find the tip (nose) 
of the missile to within the specified tolerance on the 
whole data set. 

We also tried using adaptive intensity distributions 
from frame to frame. We did this by calculating new 
sample means and variances pc and U, based on the 
segmentations of earlier images. As a further general- 
ization, we tried relaxing the assumption of normally 
distributed intensities. This was done by keeping track 
of the actual distribution of intensities within each seg- 
mented class as frames were processed, and then us- 
ing this distribution as Pr(x = vlC, = c )  in (1) when 
segmenting succeeding frames. In general, we did not 
see a marked improvement over the static distribution 
model when using either of these methods. We believe 
that this is another indication that our basic method 
is robust. 

5 Concluding Remarks 

In this paper we have used an adaptive thresholding 
method based on knowledge-based segmentation for 
the segmentation of missile video data. The result is 
a fast and reliable algorithm that segments such data 
based both on prior and learned information. 

Simple prior distributions and adaptation techriiclues 
were used in this paper, since the results obtained were 
already satisfactory. For more difficult data, it is possi- 
ble to introduce more sophisticated multi-scale texture 
models for the likelihood of the background. Another 
possible extension will be to  consider that 71, the num- 
ber of classes in the image, is not given arid needs to 
be estimated as well. This can be done for example 
via EM-type algorithms. Note though that since the 
scheme here described is extremely fast, especially for 
video data where the riumber of smoothing steps is dra- 
matically reduced, a brute-force search for n in a given 
range might be good enough for a number of applica- 
tioris. 
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Figure 3: Video Sequence Frame G9 

Figure 4: Segmentation of Figure 3 

Figure 1: Video Sequence Frame 67 

Figure 5: Video Sequence Frame 71 

Figure 2: Segrneritatiorl of Figure 1 

Figure 6: Segmentation of Figuro 5 
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