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ABSTRACT

This paper discusses the efficiency of a compression scheme for
video sequences that jointly encodes groups of pictures. Our ap-
proach, motion-compensated transform coding, applies a KLT to
decorrelate a set of motion-compensated pictures for efficient en-
coding. The theoretical investigation utilizes a signal model for
inaccurate motion compensation and provides a performance com-
parison to motion-compensated prediction. We discuss the influ-
ence of motion accuracy, residual noise, and the correlation of dis-
placement errors dependent on the number of coded pictures.

1. INTRODUCTION

Today’s video coding schemes utilize DPCM with motion-com-
pensated prediction (MCP) for efficient compression. Such com-
pression schemes require sequential processing of video signals
which makes it difficult to achieve efficient embedded represen-
tations of video sequences. This paper investigates the efficiency
of motion-compensated transform coding, a compression scheme
which jointly encodes groups of pictures (GOP). For that, we uti-
lize a powerful model for inaccurate motion compensation with
additive residual noise. This model has proven to be useful to
characterize motion-compensated prediction [1] and multihypoth-
esis motion-compensated prediction [2]. Our approach for jointly
encoding groups of pictures applies the KLT to decorrelate a set
of motion-compensated pictures. To evaluate the performance of
motion-compensated transform coding, we assume compression at
high bit-rates and determine the rate difference to optimum intra-
frame coding of individual motion-compensated pictures. In the
following, Section 2 introduces the model for motion-compensated
transform coding. Section 3 and 4 discuss respectively uncorre-
lated and correlated displacement errors, and provide numerical
results.

2. MODEL FOR MOTION-COMPENSATED
TRANSFORM CODING

Let v[l] andck[l] be scalar two-dimensional signals sampled on
an orthogonal grid with horizontal and vertical spacing of 1. The
vectorl = (x, y)T denotes the location of the sample. We interpret
ck as thek-th of K motion-compensated pictures to be coded.

Obviously, motion compensation should work best if we com-
pensate the true displacement of the scene exactly. Less accu-
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rate compensation will degrade the performance. To capture the
limited accuracy of motion compensation, we associate a vector-
valued displacement error∆k with thek-th motion-compensated
pictureck. The displacement error reflects the inaccuracy of the
displacement vector used for motion compensation and transmis-
sion. The displacement vector field can never be completely accu-
rate since it has to be transmitted as side information with a limited
bit-rate. For simplicity, we assume that all motion-compensated
pictures are shifted versions of the “clean” video signalv and dis-
torted by independent additive white Gaussian noisenk. The shift
is determined by the vector-valued displacement error∆k of the
k-th motion-compensated picture. For that, the ideal reconstruc-
tion of the band-limited signalv[l] is shifted by the continuous
valued displacement error and re-sampled on the original orthog-
onal grid. The noise signalsnµ andnν are mutually statistically
independent forµ 6= ν.
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Fig. 1. Model for a group ofK motion-compensated pictures.

Fig. 1 depicts the model forK motion-compensated pictures
ck[l] which are jointly transformed byT with K output signals
yk[l]. We assume thatT is linear, unitary, and decorrelating.

Assume thatv and ck are generated by a jointly wide-
sense stationary random process with the real-valued scalar two-
dimensional power spectral densitiesΦvv(ω) andΦcµcν (ω). The
power spectral densitiesΦcµcν (ω) are elements in the power spec-
tral density matrix of the motion-compensated picturesΦcc. The
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power spectral density matrix of the decorrelated signalΦyy is
given byΦcc and the transformT ,

Φyy(ω) = T (ω)Φcc(ω)T H(ω), (1)

whereT H denotes the Hermitian ofT andω = (ωx, ωy)T the
vector-valued frequency.

We adopt the expressions for the cross spectral densities
Φcµcν from [2], where the displacement errors∆k are interpreted
as random variables which are statistically independent fromv:

Φcµcν (ω) = E
{

e−jωT (∆µ−∆ν )
}

Φvv(ω) + Φnµnν (ω) (2)

Like in [2], we assume a power spectrumΦvv that corresponds to
an exponentially decaying isotropic autocorrelation function with
a correlation coefficientρv = 0.93.

For thek-th displacement error∆k, a 2-D normal distribu-
tion with varianceσ2

∆ and zero mean is assumed where thex- and
y-components are statistically independent. The displacement er-
ror variance is the same for allK motion-compensated pictures.
This is reasonable because all pictures are compensated with the
same accuracy. Further, the pairs(∆µ,∆ν) are assumed to be
jointly Gaussian random variables [3]. For simplicity, we assume
that the correlation coefficientρ∆ between two displacement er-
ror components∆xµ and∆xν is the same for all pairs of motion-
compensated pictures. The above assumptions are summarized by
the covariance matrix of a displacement error component.

C∆x∆x = σ2
∆




1 ρ∆ · · · ρ∆

ρ∆ 1 · · · ρ∆

...
...

...
...

ρ∆ ρ∆ · · · 1


 . (3)

Since the covariance matrix is non-negative definite [4], the corre-
lation coefficientρ∆ in (3) has the limited range

1

1 − K
≤ ρ∆ ≤ 1 for K = 2, 3, 4, . . . , (4)

which is dependent on the number of motion-compensated pic-
turesK.

These assumptions allow us to express the expected value in
(2) in terms of the 2-D Fourier transformP of the continuous 2-D
probability density function of the displacement error∆k.

E
{

e−jωT ∆k

}
:= P (ω,σ2

∆) = e−
1
2 ωT ωσ2

∆ (5)

The expected value contains differences of jointly Gaussian ran-
dom variables. The difference of two jointly Gaussian random
variables is also Gaussian. As the two random variables have
equal varianceσ2

∆, the variance of the difference signal is given
by σ2 = 2σ2

∆(1 − ρ∆). Therefore, we obtain for the expected
value in (2)

E
{

e−jωT (∆µ−∆ν)
}

= P
(
ω, 2σ2

∆(1 − ρ∆)
)

for µ 6= ν.

(6)
For µ = ν, the expected value in (2) is equal to one. With that,
we obtain for the power spectral density matrix of the motion-
compensated pictures:

Φcc(ω)

Φvv(ω)
=




1 + α(ω) P (ω,σ2) · · · P (ω,σ2)
P (ω,σ2) 1 + α(ω) · · · P (ω,σ2)

...
...

. ..
...

P (ω,σ2) P (ω,σ2) · · · 1 + α(ω)


 (7)

α(ω) is the normalized spectral density of the noiseΦnknk (ω)
with respect to the spectral density of the “clean” video signal.

α(ω) =
Φnknk(ω)

Φvv(ω)
for k = 1, 2, . . . , K (8)

For T , we assume an energy preserving and decorrelating
transform: the KLT. The eigenvalues of the power spectral den-
sity matrix Φcc areλ1 = [1 + α(ω) + (K − 1)P (ω,σ2)]Φvv

andλ2,3,...,K = [1 + α(ω) − P (ω,σ2)]Φvv . The power spectral
density matrix of the transformed signals is diagonal.

Φyy(ω)

Φvv(ω)
=


1 + α + (K − 1)P 0 · · · 0

0 1 + α − P · · · 0
...

...
. ..

...
0 0 · · · 1 + α − P



(9)

The first eigenvector just adds all components and scales with
1/

√
K. For the remaining eigenvectors, any orthonormal basis

can be used that is orthogonal to the first eigenvector. That is, the
KLT for our signal model is not dependent onω!

The rate difference [5], [2] is used to measure the improved
compression efficiency for each motion-compensated picturek.

∆Rk =
1

4π2

π∫
−π

π∫
−π

1

2
log2

(
Φykyk (ω)

Φckck(ω)

)
dω (10)

It represents the maximum bit-rate reduction (in bit/sample) possi-
ble by optimum encoding of the transformed signalyk, compared
to optimum intra-frame encoding of the signalck for Gaussian
wide-sense stationary signals for the same mean squared recon-
struction error. A negative∆Rk corresponds to a reduced bit-rate
compared to optimum intra-frame coding. The maximum bit-rate
reduction can be fully realized at high bit-rates, while for low bit-
rates the actual gain is smaller [2]. The overall rate difference∆R
is the average over all motion-compensated pictures and is used to
evaluate the efficiency of motion-compensated transform coding.

∆R =
1

4π2

π∫
−π

π∫
−π

1

2K
log2

(∏K

k=1
Φykyk (ω)∏K

k=1
Φckck(ω)

)
dω (11)

Assuming the KLT, we obtain for the overall rate difference with
(9)

∆R =
1

4π2

π∫
−π

π∫
−π

K − 1

2K
log2

(
1 − P (ω,σ2)

1 + α(ω)

)
+

1

2K
log2

(
1 + (K − 1)

P (ω,σ2)

1 + α(ω)

)
dω. (12)

The case of a very large number of motion-compensated pictures
is of special interest for the comparison to DPCM with motion-
compensated prediction.

∆RK→∞ =
1

4π2

π∫
−π

π∫
−π

1

2
log2

(
1 − P (ω,σ2)

1 + α(ω)

)
dω (13)
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According to [1], the performance of motion-compensated predic-
tion with optimum Wiener filter achieves a rate difference of

∆RMCP =
1

4π2

π∫
−π

π∫
−π

1

2
log2

(
1 − P 2(ω, σ2

∆)

[1 + α(ω)]2

)
dω. (14)

Assuming uncorrelated displacement errors (σ2 = 2σ2
∆), the

performance of motion-compensated transform coding and MCP
differs only in the influence of the residual noise power spec-
trum α(ω). That is, assuming no residual noise, both approaches
demonstrate identical performance.

3. UNCORRELATED DISPLACEMENT ERRORS

In the following, we investigate motion-compensated transform
coding and provide numerical results for comparison.
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Fig. 2. Rate difference to intra-frame coding vs. displacement
inaccuracy for a group ofK pictures. The displacement errors
are uncorrelated and the residual noise is -100 dB. For reference,
the performance of motion-compensated prediction with optimum
Wiener filter is also plotted.

Figs. 2 and 3 depict the overall rate difference over the dis-
placement inaccuracy for motion-compensated transform coding
with 2, 8, and 32 pictures. The residual noise RNL is -100 dB
and -30 dB, respectively. A residual noise level of -100 dB can be
regarded as the noiseless case, whereas -30 dB reflects the noise
level of compressed video. The limit of a very large number of
pictures and the performance of motion-compensated prediction
according to (14) is also plotted. The horizontal axis in Fig. 2 is
calibrated byβ = log2(

√
12σ∆). It is assumed that the displace-

ment error is entirely due to rounding and is uniformly distributed
in the interval[−2β−1, 2β−1] × [−2β−1, 2β−1], whereβ = 0 for
integer-pel accuracy,β = −1 for half-pel accuracy,β = −2 for
quarter-pel accuracy, etc [2]. The displacement error variance is

σ2
∆ =

22β

12
. (15)

We investigate the slope of the rate difference (13) in the noise-
less caseα → 0 for K → ∞ by applying a Taylor series expan-
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Fig. 3. Rate difference to intra-frame coding vs. displacement
inaccuracy for a group ofK pictures. The displacement errors
are uncorrelated and the residual noise is -30 dB. For reference,
the performance of motion-compensated prediction with optimum
Wiener filter is also plotted.

sion of first order for the functionP .

1 − P (ω,σ2)

1 + α(ω)
≈ σ2

∆ωT ω(1 − ρ∆) for σ2
∆ → 0, ρ∆ 6= 1

(16)
When inserting this in (13), we obtain a slope of 1 bit per inaccu-
racy step for motion-compensated transform coding.

∆RK→∞ ≈ β + const. for σ2
∆ → 0, ρ∆ 6= 1 (17)

With this assumptions, motion-compensated transform coding and
motion-compensated prediction show the same behavior in the
noiseless case. This can also be observed in Fig. 2, where the
residual noise is negligible.

If residual noise is present, motion-compensated transform
coding outperforms motion-compensated prediction by at most 0.5
bit/sample for very accurate motion compensation. This can be ob-
served in Fig. 3 and by comparing (13) with (14).

4. CORRELATED DISPLACEMENT ERRORS

So far, we assumed uncorrelated displacement errors for motion
compensation. In the following, we investigate the influence of the
displacement error correlation coefficientρ∆ on the performance
of motion-compensated transform coding.

Fig. 4 depicts rate difference over displacement error corre-
lation coefficientρ∆ for a group of 2, 8, and 32 pictures at a
residual noise level of -50 dB. The limit of a very large number
of pictures and the performance of motion-compensated predic-
tion according to (14) is also plotted. We assume that for motion-
compensated prediction the displacement errors are uncorrelated.
We observe that for increasing correlation coefficient the perfor-
mance of motion-compensated transform coding improves and
outperforms motion-compensated prediction for a large number
of pictures. Maximally negatively correlated displacement errors
cause an inferior performance.
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Fig. 4. Rate difference to intra-frame coding vs. displacement er-
ror correlation coefficient for a group ofK pictures. Very accurate
motion compensation is assumed (β = −4) and the residual noise
is -50 dB. For reference, the performance of motion-compensated
prediction with optimum Wiener filter is also plotted.
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Fig. 5. Rate difference to intra-frame coding vs. displacement in-
accuracy for a group ofK pictures. The displacement errors are
correlated withρ∆ = 0.5 and the residual noise is -30 dB. For ref-
erence, the performance of motion-compensated prediction with
optimum Wiener filter is also plotted.

Figs. 5 and 6 capture rate difference over displacement inac-
curacy for a group of 2, 8, and 32 pictures at a residual noise level
of -30 dB. The displacement error correlation coefficientρ∆ is 0.5
and 1, respectively. The limit of a very large number of pictures
and the performance of motion-compensated prediction according
to (14) is also plotted. Comparing Fig. 3, 5, and 6 withρ∆ = 0,
ρ∆ = 0.5, andρ∆ = 1, respectively, we observe that the in-
fluence of motion accuracy on the rate difference is reduced for
increasing correlation coefficient. For maximally positively cor-
related displacement errors, the efficiency of motion-compensated
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Fig. 6. Rate difference to intra-frame coding vs. displacement in-
accuracy for a group ofK pictures. The displacement errors are
maximally correlated (ρ∆ = 1) and the residual noise is -30 dB.
For reference, the performance of motion-compensated prediction
with optimum Wiener filter is also plotted.

transform coding depends only on the residual noise level.

5. CONCLUSIONS

We presented an efficiency analysis of motion-compensated trans-
form coding. We showed that the performance for uncorrelated
displacement errors in the noiseless case is identical to motion-
compensated prediction. In the presence of residual noise, the
presented scheme demonstrates an improvement of at most 0.5
bit/sample. In the case of correlated displacement errors, we
pointed out that compression efficiency improves for positively
correlated displacement errors and that the performance is only
limited by the residual noise.
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