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ABSTRACT 

 
An image segmentation scheme that utilizes image-based 
flow fields in a curve evolution framework is presented. 
Geometric curve evolution methods require an edge 
function and a vector field with certain characteristics that 
are obtained from the image itself. A vector field borrowed 
from the edgeflow segmentation [2] method is utilized both 
to obtain an edge function and to guide the curve 
evolution towards the object boundaries. This vector field 
is computed from the image using intensity, texture and 
color features. The proposed method integrates well-tested 
image features to the well-studied curve evolution 
methods thus achieving better segmentation results. 

 

1. INTRODUCTION 
 
Image segmentation is an important first step in many 
image processing and computer vision tasks. It can be 
defined as a partitioning of the image into homogenous 
regions. One of the popular approaches to image 
segmentation is curve evolution and active contour 
models [1,4,8,11,12,13]. Curve evolution methods usually 
result in closed contours as opposed to disconnected 
edges resulting from filtering methods. However, their 
effectiveness in segmenting natural images that are rich in 
texture has not been clearly demonstrated. On the other 
hand some recent filtering-based image segmentation 
methods have been successfully applied to a variety of 
images. Example for an edge-based segmentation method 
is the edgeflow technique [2], which uses a vector 
diffusion method to find edges. Our aim is to create a 
combined method that will result a better segmentation 
that can be applied to a vast variety of images. 
The proposed method integrates the edgeflow vector field 
to the curve evolution framework. The vector field in 
edgeflow method is calculated by using intensity, texture 
and color features of the image. This solves the problem of 
utilizing diverse set of image features with the curve 
evolution. The commonly used edge function is then 

generated from the edgeflow vector field by solving a 
Poisson equation.  
The rest of the paper is organized as follows. We review 
active contour methods and edgeflow methods in section 
2. In section 3, we present an edge-based hybrid approach 
to segmentation using edgeflow and geometric active 
contours. In section 4 we give some experimental results 
and conclude with discussions in section 5. 
 

2. PREVIOUS WORK 
 
Active contours and curve evolution methods usually 
define an initial contour 0C  and deform it towards the 

object boundary. The problem is formulated using partial 
differential equations (PDE).  The previous research 
follows two different paths in terms of implementation of 
active contours, namely parametric active contours (PACs) 
and geometric active contours (GACs). PACs use a 
parametric representation of the curves and GACs utilize 
level set methods [3,6]. Recently some connections 
between these two methods have been established [1,7]. 
Our method uses the GAC framework for the 
implementation of the proposed algorithm. 
Curve evolution methods can utilize edge information 
[1,4,8], regional properties [11,12] or a combination of them 
[13]. Edge-based active contours try to fit an initial closed 
contour to an edge function generated from the original 
image. The edges in this edge function are not connected, 
so they don't identify regions by themselves. An initial 
closed contour is slowly modified until it fits on the nearby 
edges. 
Let 2( ):[0,1]C ϕ → ℜ  be a parameterization of a 2-D 

closed curve. A fairly general curve evolution can be 
written as: 

 ( ) ( )C N S N N
t

α βκ∂ = + + ⋅
∂

rr r r
  (1) 

where κ  is the curvature of the curve, N
r

 is the normal 

vector to the curve, ,α β  are constants, and S
r

 is an 

underlying velocity field whose direction and strength 
depend on the time and position but not on the curve front 
itself. This equation will evolve the curve in the normal 



direction. The first term is a constant speed parameter that 
expands or shrinks the curve, second term uses the 
curvature to make sure that the curve stays smooth at all 
times and the third term guides the curve according to an 
independent velocity field. 
In their independent and parallel works, Caselles et al. [8] 
and Malladi et al. [4] initialize a small curve inside one of 
the object regions and let the curve evolve until it reaches 
the object boundary. The evolution of the curve is 
controlled by the local gradient. This can be formulated by 
modifying (1) as: 

( )C F gN
t

εκ∂ = +
∂

r
   (2) 

where ,F ε  are constants, and ( )ˆ1 / 1g I= + ∇ . Î  is the 

Gaussian smoothed image. This is a pure geometric 
approach and the edge function, g, is the only connection 
to the image. Caselles et al. [1] introduced geodesic active 
contours, which is an improvement over the previous 
active contour methods. Starting with the snakes problem 
defined by Kass et al. [5], they reformulated the energy 
functional as a geodesic computation in a Riemannian 
space and found the following gradient descend equation: 

 ( ) ( )C F gN g N N
t

κ∂ = + − ∇ ⋅
∂

r r r
  (3) 

Here g−∇  defines a vector field on the pixels of the image. 

The corresponding vectors are orthogonal towards the 
closest boundary or edge. The advantage of this method 
over the pure geometric approaches is that even if the 
curve propagates beyond the boundary, the g∇  term in 

(3) pulls the curve back towards the boundary. Even 
though an improvement over previous methods, this 
method is still prone to boundary leaking as shown in [14]. 
Edgeflow image segmentation [2] is a recently proposed 
method that is based on filtering and vector diffusion 
techniques. Its effectiveness has been demonstrated on a 
large class of images. It features multiscale capabilities and 
uses multiple image attributes such as texture and color. 
First, a vector field is defined on the pixels of the image 
grid (Fig 1b). At each pixel, the vector’s direction is 
oriented towards the closest image discontinuity at a 
predefined scale. The magnitude of the vectors depends 
on the strength and the distance of the discontinuity. 
After generating this vector field, a vector diffusion 
algorithm is applied to detect the edges. This step is 
followed by edge linking and region merging to achieve a 
partitioning of the image. Details can be found in [2]. 

 
3. COMBINING EDGEFLOW AND GAC 

 
Most of the previous research on curve evolution 
emphasize the geometric nature of the problem and doesn’t 

establish close connections to diverse set of 
characteristics that can be extracted from an image. These 
image characteristics are very important for the quality of 
the segmentation results . On the other hand, these PDE-
based curve evolution techniques establish a nice 
theoretical framework to work on. The real challenge is to 
utilize image attributes effectively for image segmentation. 
The recently proposed edgeflow method is quite effective 
on large and diverse class of images, but requires post 
processing to detect closed contours. One of the 
contributions of our proposed method is to utilize the 
effective edgeflow method within the curve evolution 
framework to obtain better segmentation results. 
Two key components shaping the curve evolution are the 
edge function g  and the external force field extF

r
. The 

purpose of the edge function is to stop or slow down the 
evolving contour when it is close to an edge. So g is 
defined to be close to 0 on the edges and 1 on 
homogeneous areas (Fig. 1c).  A popular choice of g  is 

( )ˆ1 / 1g I= + ∇ . The external force vectors extF
r

 attract the 

active contour towards the boundaries. At each pixel, the 
force vectors point towards the closest object boundary 
on the image (Fig. 1b).  
We use the edgeflow vector field as our external force field 
in a GAC formulation. Similar to other external force fields, 
edgeflow vectors are designed to point towards the 
closest boundaries. One of the advantages of edgeflow is 
that it doesn’t depend directly on image gradients. It can 
be adjusted to work at different scales, and it is easily 
extendible to color and texture images. Even though the 
PDEs look very similar, this approach has a fundamental 
difference compared to the GACs. The setup of the GACs 
requires that an edge function g  is designed. From this 

edge function, the force vectors are automatically 
generated using the equation extF g= ∇

r
. The success of 

the segmentation depends on how good the edge function 
reflects the boundaries on the image. On the other hand, in 
our proposed method, extF

r
—the edgeflow vector field—is 

custom designed using diverse set of image features 
including color and texture. An edge function is then 
obtained from extF

r
. 

It has been shown in [7] with comparison to its 
counterparts that custom designing extF

r
 can lead to better 

results and fix the shortcomings of geometric active 
contours such as boundary leaking. Only recently this 
external force field borrowed from PACs is integrated to 
GACs [9]. One of the shortcomings in the design of both 
edge functions and external forces is that they depend 
directly on the image gradients as the boundary locations 



even though it has been shown that the image gradient is 
very sensitive to the noise and is not very reliable. 
To be consistent with the formulation of the GACs, which 
require extF g= ∇

r
, we find a potential function whose 

gradient is the edgeflow vector field. One problem with this 
is that there is no guarantee that edgeflow is a 
conservative field and this potential function exists. To 
solve this problem, we separate the conservative and non-
conservative components of edge flow field. Let S

r
 be the 

edgeflow vector field. According to the Helmholtz theorem, 
any vector field can be written as a sum of an irrotational 
(conservative) and a solenoidal vector field. So the edge 
flow vector field can be written as 
 S V A= − ∇ +∇×

r rr r
   (4) 

taking the divergence of both sides 
 2

0

( )S V A∇⋅ = − ∇ + ∇ ⋅ ∇ ×
r rr r r

14243    (5) 

Since the second term is zero, we only need to solve a 
Poisson equation [15] to find the edge function V  

 2S V∇⋅ =−∇
rr

    (6) 
Having generated both the edge function and the external 
force field, our proposed curve evolution equation is  

 ( )C V N S N N V N
t

α κ∂ = + ⋅ +
∂

rr r r r
  (7)  

where α  is a constant, κ  is the curvature, and N
r

 is the 
normal to the curve. 
Edgeflow vectors can be calculated based on the image 
features such as pixel intensity, color, texture or 
combinations of them. Unlike other edge-based active 
contour methods, applying our segmentation method to 
texture or color images doesn’t require any changes in the 
formulation of the curve. This is because the flow vector 
calculation is separated from the curve evolution. 
 

4. EXPERIMENTAL RESULTS 
 
The implementation of the proposed method consists of 
three steps. In the first step, the edgeflow vectors are 
generated. Using this vector field, an edge function is 
obtained by solving a Poisson equation. These outputs 
are then used in the third step wherein a manually 
instantiated curve is propagated according to (7). Curve 
propagation is  
then repeated until the curve converges to a stable 
boundary.  
The edgeflow vectors are calculated using a predefined 
scale parameter. This vector field calculation is conducted 
using intensity, color, or texture features or a combination 
of them depending on the type of the image. For a detailed 
discussion of edgeflow computations we refer to [2]. After 
calculating the edgeflow vector field S

r
, the edge function 

V is obtained by solving (6) with Neumann boundary 
conditions. Fig. 2 demonstrates this process on a natural 
image where a tiger is standing in a grass field. Texture and 
color features of the image have been used in the 
calculations. Fig. 2c shows the edgeflow vector field of a 
part of the image and Fig. 2b is the edge function 
calculated from this vector field. 
After obtaining S

r
 and V, the well-known level set method 

formulation [3,6] is used to imp lement the curve evolution 
in (8). This requires defining a corresponding level set 
function U that embeds C as its zero level set and the time 
evolution of U. The level set equation corresponding to (8) 
is  

 ( )U V U S U
t

α κ∂ = + ∇ + ⋅∇
∂

r
 (8) 

Here U is a 3-D function where U(x, y) = 0 defines the 
evolving curve. For more details refer to [6]. 
The segmentation results on the tiger image are shown in 
Fig. 3. A curve is instantiated close to the borders of the 
image in Fig. 3a. This curve then shrinks and captures the 
boundary of the tiger in Fig 3(b-c). α  is set as –1 in (7) to 
shrink the curve.  In Fig. 3d, a small contour is initialized 
inside the tiger. α  is set as 1 to expand the curve (Fig 3e) 
and the corresponding segmentation result is shown in 
Fig. 3f. 
Fig 4 shows segmentation of a lizard image using multiple 
independent curves. 24 curves are instantiated at different 
locations in the image and all of them are expanded. The 
curve evolutions are guided by color and texture features. 
 

5. DISCUSSION 
 
We have presented a new segmentation method by 
integrating edgeflow method to the curve evolution. 
Images are successfully processed using texture and color 
features. A distinguishing feature of the proposed method 
is that in this approach the vector field generation is 
separated from the curve evolution. In the past, the 
assumption was that the vector field needs to be generated 
by a PDE. Because of the mathematical complexity of it, 
mostly simple designs were used. The ability to freely 
design the vector field independent from the curve 
evolution facilitates a better analyses of image 
segmentation. Edgeflow vector field is used in our 
implementation but any vector field with similar 
characteristics, such as the one in [10].  
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Figure 4. (a) A lizard image (b) Multiple initial curves are 
instantiated. (c) Evolving curves. (d) Segmentation result. 

Fig. 1. (a) Image of blood cells. (b) Edgeflow vector field 
corresponding to the rectangle on the image. (c) An example for 
an edge function. 

(a) (c) (b) 

(a) 

(c) 

(b) 

Figure 2. (a) An image of a tiger. (b) Edge function. (c) Edgeflow 
vector field corresponding to the rectangle on the original image. 

(a) 

Figure 3. (a) An initial curve is instantiated. (b-c) Corresponding 
curve evolution. (d) A curve is instantiated inside the tiger. (e-f) 

(b) (c) 

(d) (e) (f) 


