A FAST AND HIGH SUBJECTIVE QUALITY SPRITE GENERATION ALGORITHM
WITH FRAME SKIPPING AND MULTIPLE SPRITES TECHNIQUES

Shao-Yi Chien", Ching-Yeh Chen, Wei-Min Chao, Chih-Wei Hsu,
Yu-Wen Huang, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
{shoayi, bluecity, hydra, jeromn, yuwen, lgchen} @video.ee.ntu.edu.tw

ABSTRACT

Sprite coding, which is a new coding tool in MPEG-4, can
achieve high coding efficiency with high subjective quality at
low bit rate. Many sprite generation algorithms have been pro-
posed; however, the computational intensity is very high and the
quality is not good enough because of the limitation of simple
motion models. In this paper, a novel sprite generation algorithm
is proposed with several new techniques. A frame skipping tech-
nique can generate the sprite with only several important frames
to accelerate the process with similar subjective quality. In addi-
tion, a boundary matching and multiple sprites techniques can
overcome the limitation of simple motion models to achieve high
subjective quality with little computation overhead. Experiments
show the proposed algorithm is 46 times faster than the algo-
rithms in MPEG-4 VM and have high subjective quality. These
techniques can be also applied with other sprite generation algo-
rithms.

1. INTRODUCTION

A sprite is an image that collects information belonging to a
video object in a video sequence. For still video objects, such as
background, the associated video object planes (VOPs) in every
frame are very suitable to be represented with a sprite, which is
called sprite coding and is supported in MPEG-4 video standard
as an efficient coding tool [1]. Sprite coding has been proven to
have good coding efficiency, which can achieve high subjective
quality with very low bit rate [2]. The most important part of
sprite coding is the generation of sprite information, where
global motion estimation and compensation are involved.

Many sprite generation algorithms have been proposed. In
the verification model of MPEG-4 and several other algorithms,

gradient descent based global motion estimation is applied [3][4].

In these algorithms, the gradient of error with respect te the mo-
tion parameters needs to be calculated in whole frame in each
iteration, which introduces enormous computation. In [5], a full
search image matching algorithm is further included as well as
the gradient descent algorithm, whose high computational inten-
sity makes sprite coding infeasible for real applications. A fea-
ture points hierarchical global motion estimation based algo-
rithm is proposed in [6]. The computation load is lower; how-
ever, for real applications, a fast sprite generation algorithm is

" This work is partly supported by SiS education foundation.

0-7803-7622-6/02/$17.00 ©2002 IEEE

1-193

still required. Besides, the subjective qualities of the sprites gen-
erated with these algorithms are not satisfied. Many artifacts
exist, which are caused by the limitation of the simple motion
model with six, eight, or twelve motion parameters.

In this paper, a novel fast and high subjective quality sprite
generation algorithm is proposed. A frame skipping technique is
proposed to generate the sprite information with only several
important frames, not all frames, to speed up the process, which
is named as frame skipping sprite (FS-Sprite). In addition, a
multiple sprites technique is also proposed in this paper, which
can divide a sprite into many small sprites to overcome compli-
cated camera motion with a simple motion model. Tt is named as
Multi-Sprite. Furthermore, a boundary matching technique is
also proposed to improve the subjective quality with small
computation load.

This paper is organized as follows. First, the proposed algo-
rithm, including FS-Sprite, Multi-Sprite, and boundary matching
are described in Sec., 2. Next, the experimental results are shown
in Sec. 3. Finally, Sec. 4 gives the conclusion.

2. PROPOSED ALGORITHM

In this section, an original sprite generation algorithm is first
described. Then the algorithm is accelerated with FS-Sprite, and
the subjective quality of the sprite is improved with boundary
matching and Multi-Sprite. Note that FS-Sprite, Multi-Sprite,
and boundary matching technique can be applied indepently.

2.1, Original sprite generation algorithm

The flowchart of the original sprite generation algorithm is
shown in Fig. 1. It is based on global motion estimation with
feature points.
2.1.1. Select feature poinis

In this algorithm, the first step is the selection of a set of N

feature points (typically N=1000), whose motion vectors are
more reliable. They are points that have largest Hessian value [6]:

e, (a2 dzl(x,y)}z .
o] v ddy

IEEE ICIP 2002

mr.l M
Selecl feature points

et (el == | Moton Estimatioa

Spete 1|

o

Fig. 1. Flowchart of the original sprite generation algorithm.

Note that, in order to improve the correctness of global motion
estimation, these feature points need to be dispersed evenly in
the frame, The frame is divided into four parts, and the feature
points are respectively chosen in every part.

2.1.2. Motion estimation

The second step is motion estimation. Affine model is used
to describe the motion vector, which can be shown as the follow-
ing equation:

G- 2IB]-i)
¥ by By b,
where (x, y) and (x’, ¥') denote the coordinates of a point in the

current frame and in the sprite, respectively, Because the feature
points are Hessian points, the block maiching algorithm in an L-

neighborhood (typically L=4) around the feature point is applied.

Initially, the corresponding position (x’, y*) of each feature point
in the sprite of the current frame is predicted with the motion
parameters of the last iteration or the previous frame. Then a new
optimal matching position is searched around the predicted posi-
tion. This motion vector prediction procedure can reduce the
computation load by decreasing the search range and improve
the correctness of motion vectors. Next, the motion parameters
are calculated by LMS algorithm. This process is repeated itera-
tively until the process is convergent or the number of iterations
is larger than ten,

2.1.3. Warping

According to the motion parameters and the affine model, the
current frame is warped to update the sprite. Since (x°, y') in the
sprite usually de not correspond to integer grid in the current
frame, a bilinear interpolation has to be applied.

2.2. FS-Sprite

When the camera motion is slow, or the camera is not mov-
ing, only littie new information in the current frame needs to be
added into the sprite. Some frames can be skipped to accelerate
the sprite generation procedure with similar subjective guality.
The flowchart of FS-Sprite is illustrated in Fig. 2(a). The motion
estimation stage is divided into two stages. At the first stage,
only P feature points (typically P=200~500) are used to roughly
calculate motion parameters. According to the rough motion
parameters, the percentage of new information that does not exist
in the sprite can be estimated. If the percentage is larger than a
threshold, Percentage, we continue to do the second stage, or
this frame is skipped. When the current frame is skipped, the

1-194

ersfrarcts) Mty

Sefect feature points

mn.--:—-‘mmmm
v (st stage)
Cenverge
or Stop
da (i+1)

(a) (b)
Fig. 2. Flowchart of (a) FS-Sprite and (b) Multi-Sprite.

motion parameters of this frame are the rough motion parameters,
and large portion of computation is also skipped.

At the second stage, all feature points are used to calculate
the motion parameters. The procedure is the same as that de-
scribed in Sec. 2.1.2. Note that, among all feature points, the
motion vectors of the P feature points have been calculated in
the first stage and do not need to be recalculated in this stage.

2.3. Boundary matching

In a lot of experiments, we found the discontinuous lines or
texture caused by the inaccuracy of global motion estimation
is obvious and unsatisfied for human vision. In order to elimi-
nate the discontinuous lines, a method called boundary match-
ing is proposed. After warping, the new pieces to be added
into the sprite can be found. The positions of these new pieces
in the sprite are further refined. They are shifted vertically in
the sprite, and then the refined position, which has the mini-
mum boundary matching error, can be located. The motion pa-
rameters are also refined according to the optimal position.

2.4. Multi-Sprite

In the conventional sprite generation algorithm, only one
sprite is generated. Every frame is warped into the sprite with
respect to the coordinate system of the first frame. When the
camera motion is large, the subjective quality of the sprite is
degraded. For example, if the camera is zooming in, and the
current frame is warped with respect to the coordinate system of
the first frame, although the resolution of the current frame is
higher than the first frame, the resolution is lowered to be the
same with the first frame. Furthermore, for complex camera mo-
tion, simple motion model with six, eight, or twelve parameters
cannot be successfully applied. In order to improve the quality of
the reconstructed frame without extra computing complexity
overhead, multiple sprites can be generated instead of only one
sprite, which is named as Multi-Sprite. The flowchart of Multi-
Sprite is shown in Fig. 2(b). Two thresholds are set for scaling
and rotation to detect the resolution changing and deformation
when the current frame is warped to the sprite domain. After
motion parameters are derived, if the preduct of scale motion

(a)
Fig. 4. A part of reconstructed frames of the original algorithm
{a) without boundary matching and (b) with boundary matching
at Stefan #99.

is smaller than the threshold Tk s, or the
rotation parameters of motion parameter, o, or b,, is larger than

parameters, a,-b

v

the threshold T%_r, a new sprite is formed with this frame as the
first frame; otherwise, this frame is warped to the original sprite.
If a new sprite is generated, it is also used for next frame, or the
original sprite is used.

3. EXPERIMENTAL RESULTS
3.1. Original Sprite

The experiments have been carried out using the CIF test se-
quence Stefan with its mask sequence. Fig. 3 shows the sprite
obtained with original sprite generation algorithm. There are
some discontinuous lines in sprite because the motion parame-
ters are not accurate enough.

3.2. Boundary Match

In Fig. 4, the reconstructed frame of the original algorithm
and the original algorithm with boundary matching are shown.
Obviously, the discontinuity in Fig. 4(2) is not satisfied. In Fig.
4(b), after boundary matching algorithm is applied, these discon-
tinuous lines become smoother, and the subjective quality is
improved. Note that only a part of the reconstructed frames are
shown for clear comparison.

3.3, FS-Sprite

Table 1 shows the run time and the total number of frames
that are actually warped to sprite. The test platform is a PC with
a AMD K-7 800MHz processor and a general C++ compiler.
The test sequence is Stefan in CIF format with 300 frames. To be
brief, the original algorithm with boundary matching can speed
up the sprite generation up to 36 times compared with the
method in MPEG-4 Video VM [3]. FS-Sprite (also with bound-

I-195

Table |. Comparison of run time.

Method Time (sec), No. of warped frame

Original algorithm 149, 300

With boundary matching 151, 300

VM Sprite 5462, 300

FS-Sprite P

Percentage 200 300 400 500

24% 79,37 82,36 34, 38 85,37
18% 90, 74 91,73 94, 72 95,74
12% 101,114 103,116 | 104,118 [107,118
10% 107,136 109,137 | 110,138 | 110,136
8% 116,170 116,167 | 118,167 | 119, 167
7% 120,183 121,184 | 122,185 t 123,185
6% 122,195 123,195 | 124,195 | 125,195

Fig. 6. Reconstructed frames of (a) the original algorithm with
boundary matching and (b) FS-Sprite with boundary matching at
Stefan #186.

Table 2. The first frames of multiple sprites.

The First Th s
Frames 0.5 0.6 0.7 0.75 0.8
1 1 1 1 1
248 248 248 248 248
0.05 270 270 270 270 270
298 296 294 292
- 300 296
E 1 1 1 1 1
245 245 245 245 245
0.04 264 264 264 264 264
298 297 295
299

ary matching) can further reduce 47.68% ~ 17.22% computation
with different parameters P and Percentage. To achieve the same
quality of original algorithm with boundary matching, P should
larger than 400, and Percentage should be smaller than 8%. At
this choice, 21.85% run time can be reduced, and it is 46 times
faster than MPEG-4 Video VM, where the fast sprite generation
proposed in MPEG-4 part 7 is only 7 times faster {7]. Fig. 5
shows the sprite generated with FS-Sprite, and Fig. 6 shows the
comparison of the reconstructed frame with original algorithm

with boundary matching and FS-Sprite (P=500, Percentage=6%)
with boundary matching. The quality of FS-Sprite is the same,
sometimes even better because less discontinuity effects occur
when some frames are skipped.

3.4. Multi-Sprite

For different T_s and Th_r, Table 2 shows the frames where
new sprites are formed. For example, if Th_s=0.7 and Th_r=0.04
four sprites are generated, and the first sprite starts to be gener-
ated at frame 1, the second starts to be generated at frame 245,
the third starts at frame 264, and the fourth starts at frame 298.
Fig. 7 shows the sprites generated with Multi-Sprite. There are
some black regions in sprites because the information of these
regions do not valid after we create a new sprite, namely, there
should be a foreground object covering these regions when the
frame is reconstructed, thus it will not influence the final recon-
structed results. Multi-Sprite has better subjective performance
especially when the frame has serious deformation or resolution
changing. The former one is shows in Fig. 8, where the subjec-
tive quality of the reconstructed frame of Multi-Sprite is higher;
the latter one is shown in Fig. 9, where the high resolution of the
frame can be kept. Moreover, although the quality is improved
with Multi-Sprite, the calculating time of Multi-Sprite is almost
the same. The computation complexity overhead is quite small.

3

4. CONCLUSION

In this paper, a new sprite generation algorithm is proposed.
The sprite can be generated fast with frame skipping based algo-
rithm, FS-Sprite. Besides, high subject quality can be achieved
with multiple sprites technique, Multi-Sprite, and boundary
matching with only little computation overhead. Experiments
show the proposed algorithm is 46 times faster than that pro-
posed in MPEG-4 VM and can give high subjective quality
reconstructed frames.

©
Fig. 8. A part of reconstructed frames of (a) the original algorithm
with boundary matching, (b) Multi-Sprite, and {c) original se-
quence at Stefan #267.

Fig. 9. Reconstructed frames of (a) the original algorithm with
boundary matching and (b) Multi-Sprite at Stefar #298.

5. REFERENCES

[1] MPEG Video Group, Text of 14496-2, Part 2: Visual,
ISO/IEC JTCL/SC 29/WGI 1 N4350, 2001.

[2] K. Jinzenji, S. Okada, H. Watanabe, N. Kobayashi,
“Automatic two-layer vide object plane generation
scheme and its application to MPEG-4 video coding,” in
Proc. of IEEE International Symposium on Circuils and
Systems 2000, vol. 3, pp. 606-609, 2000.

(3] MPEG Video Group, The MPEG-4 Video Standard Veri-
Jication Model 18.0, ISO/IEC JTC1/SC 29/WG11 N3908,
2001.

[4] M.-C. Lee, W.-G. Chen, C.-L. B. Lin, C. Gu, T. Markoc,
8. L. Zabinsky, and R. Szeliski, “A layered video object
coding system using sprite and affine motion model,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 7, no. 1, Feb. 1997.

[5] H. Nicolas, “New methods for dynamic mosaicking,”
IEEE Transactions on Image Processing, vol. 10, no. 8,
Aug. 2001.

[6] A. Smolic, T. Sikora, and J.-R. Ohm, “Long-term global
motion estimation and its application for sprite coding,
content description, and segmentation,” JEEE Transac-
tions on Circuits and Systems for Video Technology, vol.
9, no. &, Dec. 1999,

[7] MPEG Video Group, Text of 14496-7 PDTR (Optimized
Visual Reference Software), ISO/IEC JITC1/SC29/WG11
N4057, 2001.

I-196

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

