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ABSTRACT

In this paper, we address the issue of joint space-time segmenta-
tion of image sequences. Typical approaches to such segmentation
consider two image frames at a time, and perform tracking of in-
dividual segmentations across time. We propose to perform this
segmentation jointly over multiple frames. This leads to a 3-D
segmentation, i.e., search for a volume “carved out” by a moving
object in the (3-D) image sequence domain. We pose the problem
in Bayesian framework and use the MAP criterion. Under suitable
structural and segmentation/motion models we convert MAP esti-
mation to a functional minimization. The resulting problem can be
viewed as volume competition, a 3-D generalization of region com-
petition. We parameterize the unknown surface to be estimated,
but rather than solving for it using an active-surface approach, we
embed it into a higher-dimensional function and use the level-set
methodology. We show experimental results for the simpler case
of object motion against still background although, given suitable
models, the general formulation can handle complex motion too.

1. INTRODUCTION

In most studies to date, image sequences are primarily analyzed
and processed in groups of two frames; by differentiating one
frame from the other, one is able to infer the dynamics occur-
ring in an image sequence. These short-term dynamics (such as
displacement between two frames, or occlusion/exposure areas)
can be linked together or temporally constrained in order to reason
about longer term dynamics. Although the two-frame approach
has been very successful in some applications (e.g., MPEG com-
pression standards), it is often inadequate for the analysis of non-
constant velocity motion, detection of innovation areas (occlusion
and exposure), or video segmentation.

The segmentation of an image sequence into moving objects
is closely related to the estimation of motion for each object. In
general, accurate segmentation requires the knowledge of each ob-
ject’s motion parameters, whereas accurate estimation of each ob-
ject’s motion parameters greatly benefits from sequence segmen-
tation. Solving both problems jointly leads to the joint motion
estimation/segmentation. The early attempts to solve this prob-
lem involved simple thresholding, while later methods applied en-
ergy minimization [1] or Markov random field (MRF) models [2].
In order to automatically find the number of motion classes, K-
means clustering [3] and mixture models under MDL formulation
[4] have been studied.

More recently, motion segmentation methods based on active
contours have been proposed. The original active-contour formu-

lation [5] suffers from stability problems and fixed topology. These
issues can be resolved by reformulating the problem via embed-
ding the contour into a higher-dimensional function of which it
is a zero-level set [6]. Developed originally for the modeling of
flame propagation, the approach has found numerous applications
in computer vision and image processing. Recently, Caselles et al.
[7] showed that energy-minimizing active contours are related to
the level set formalism by means of geodesic active contours (i.e.,
minimal distance paths) in a Riemannian space.

In the context of motion segmentation, geodesic active con-
tours have been applied to statistically-derived motion boundary
maps [8], and to tensor-derived maps [9, 10]. In each case, the
curve evolution stops at large gradients of the motion-boundary
map, which are closely related to the intensity gradient ∇I; the
approach can be considered edge-based. An alternative approach
is to consider all intensities in a region, for example by means
of region competition [11], as recently proposed by Mansouri and
Konrad [12, 13], Jehan-Besson et al. [14] and Debreuve et al. [15].

The above approaches perform image sequence segmentation
on the basis of two image frames at a time, and therefore cannot
take longer-term dynamics into account. Some early work using
multiple frames includes motion detection using 3-D MRF mod-
els [16], “video-cube” segmentation based on marker selection and
volume growing [17], and 3-D extension of a discretized version
of the Mumford-Shah functional [18]. Also, motion boundary de-
tection in the x − y − t space, that is related to multi-frame seg-
mentation, has been proposed [19] (see next section).

In this paper, we propose a novel framework for multiple-
frame motion estimation and segmentation. The proposed frame-
work is Bayesian, and by a suitable choice of models leads to a
volume-competition formulation in space-time, where the com-
peting volumes are described by a parametric active surface (3-
D equivalent of active contour). The resulting cost functional is
minimized using level set methodology.

2. SEGMENTATION BASED ON ACTIVE SURFACES

In order to formulate image sequence segmentation jointly over
several frames, it is natural to consider an extension of active con-
tours to active surfaces. This leads to minimal-surface formula-
tions that have been applied to 3-D shape recovery [20, 21]. A
path particularly pertinent to this paper has been undertaken by
Caselles et al. [21]. Let I : Ω × T → R+ be intensity and let
~ς be a surface in 3-D space with area S. By parameterizing the
surface, ~ς(p, q) : [0, 1] × [0, 1] → R3 with p = (x, y, z) and
q = q(x, y, z), Caselles et al. have proposed to compute the min-



imal surface englobing a 3-D object as follows:

min
~ς

∫∫

S

g(δI)d~ς  
∂~ς

∂t
= [g(δI)κm −∇g(δI) · ~n]~n,

where g(·) is a strictly decreasing function, δI is a measure of in-
tensity variation, d~ς is a Euclidean area element, κm is the mean
curvature and ~n is the inward unit normal to ~ς . The term g(δI)κm~n
smoothes out the contour by reducing the curvature, unless g(δI)
is zero which means a large intensity change (e.g., perfect edge).
The term (∇g(δI) ·~n)~n “pushes” the contour towards an intensity
edge as long as the orthogonal component of ∇g is non-zero. This
term allows locking to edges with intensity variations or even gaps
along the edge. This approach has been further extended by the
same authors:

min
~ς

∫∫∫

V

f(δI)d$ + λ

∫∫

S

g(δI)d~ς, (1)

where the new term is a measure of the Euclidean volume element
d$ weighted by f(δI), and f(·) is another strictly decreasing
function. The new term adds a constant “balloon” force f(δI)~n
to the surface evolution equation helping avoid local minima and
speeding up convergence.

Depending on the definition of the measure of intensity vari-
ation δI , different applications have been devised. With g(δI)
defined as 1/(1 + |∇I|p), and p = 1 or 2, the geodesic surface
computation has been applied to MRI (magnetic resonance imag-
ing) data segmentation [21]. With δI = |It|/(I2

x + I2
y)1/2, i.e.,

normal component of optical velocity (where Ix, Iy, It are hori-
zontal, vertical and temporal intensity derivatives, respectively),
(1) has been used for motion detection against static background
[19] with very interesting results for synthetic data.

3. PROBLEM FORMULATION

We pose the problem in the framework of maximum a posteriori
probability (MAP) estimation. Let again ~ς be a parameterized sur-
face in the x−y−t space, let It be an image frame at time t, and
It = {Iτ : t − T ≤ τ ≤ t + T} be a subset of image sequence
based on which ~ς is estimated. Finally, let p and p̄ be motion
parameters (e.g., affine with constant or slowly-varying velocity
[22]) for the volume inside and outside of ~ς , respectively; we as-
sume that motion trajectory for each image point can be computed
either from p or p̄. Following the framework for two-frame seg-
mentation [12], the MAP-based multiple-frame segmentation can
be then expressed as follows:

max
~ς,p,p̄

p(~ς, p, p̄|It) = (2)

max
~ς,p,p̄

p(It|~ς, p, p̄, It\{It})p(~ς, p, p̄|It\{It}),

where p denotes probability density. For the likelihood term, we
propose the following spatio-temporal structural model:

I(x, t) = µ(x, t; ri) + ηi(x, t), (3)

r1 = p, η1  N (0, σ2
1) if (x, t) inside ~ς

r2 = p̄, η2  N (0, σ2
2) if (x, t) outside ~ς

where µ(x, t; ·) is an average intensity along motion trajectory,
and η is an independent identically-distributed zero-mean Gaus-
sian random variable. Note that different motion parameters and

noise variances are assigned to points inside and outside of ~ς .
This model basically expresses intensity at (x, t) as an average
value plus perturbation. As for the prior, we assume for now in-
dependence of ~ς from It\{It} thus ignoring the direct impact of
spatio-temporal intensity edges on the shape of ~ς . Furthermore,
we assume for now independence between ~ς , p and p̄, and uni-
form distributions for p and p̄. Under these assumptions we have
p(~ς, p, p̄) ∝ p(~ς). Since we wish to describe the surface ~ς most
compactly (lowest bit rate), we choose the prior to be a function
of the area S of ~ς . These assumptions lead to the following mini-
mization:

min
~ς,p,p̄

α

∫∫∫

V

ξ(x, t; p)dxdt + (4)

∫∫∫

V̄

ξ(x, t; p̄)dxdt + λ

∫∫

S

d~ς,

where ~ς = ∂V , V ∪ V̄ = Ω × T (V is inside of ~ς and V̄ is outside
of ~ς), ξ(x, t; p) = |I(x, t)−µ(x, t; p)|2, α reflects the difference
of variances between the Gaussian random variables η inside and
outside of ~ς , and λ associates a cost with the Euclidean length d~ς .
Minimization (4) can be interpreted as volume competition: the
first term measures the compatibility of image point at (x, t) with
the overall intensity and motion inside of ~ς , whereas the second
term measures such compatibility with the outside of ~ς . The third
term assures that a minimal area (smooth) surface is sought. Thus,
the minimization process seeks as smooth a surface as possible that
divides Ω×T into such V and V̄ that each is best explained by its
own motion parameters and intensity.

In order to carry out minimization (4), the problem needs to
be decomposed into interleaved minimizations with respect to ~ς
and (p, p̄). Since in this paper we are interested primarily in vali-
dating the joint space-time formulation of the video segmentation
problem, we consider for now only the simpler case of segmenting
a moving object against stationary background. We will address
the general case of several moving objects and a possibly moving
background, in the future. Under this assumption, we propose, af-
ter Jehan-Besson and Barlaud [14], the absolute frame difference
|I(x, t) − I(x, t − 1)| as the measure of background intensity
variation in time ξ(x, t; p̄), and a fixed penalty α within the object
(ξ(x, t; p)=1). In order to attain the global minimum in (4), the
surface ~ς must assign points (x, t) with small frame difference to
its outside (V̄), and those with large difference to its inside (V).
The balance between such assignments is controlled by α. Al-
though this model may seem counterintuitive, it has been shown to
work well in the 2-D case [14].

4. ESTIMATION OF THE BOUNDARY SURFACE

Since in the simplified case considered no motion parameters need
to be estimated, minimization (4) reduces to:

min
~ς

∫∫∫

Ω×T

h(It)dxdt + λ

∫∫

S

d~ς, (5)

h(It) =

{

α if (x, t) ∈ V,
|I(x, t) − I(x, t − 1)| if (x, t) ∈ V̄.

Note that this form is related to (1): the Euclidean area element
weight is 1 (g(δI) = 1), whereas the weighted volume measure



is a discontinuous function h(·) that quantifies the competition be-
tween volumes. As we shall see, this will result in an additional
force helping avoid local minima and speeding up convergence.

Although at the first glance our new formulation (5) and for-
mulation (1) look very similar, they differ, in fact, significantly.
The formulation (1) is edge-based and requires strong edges δI in
the data to which the surface ~ς “locks”. Our new formulation, how-
ever, is volume-based and should work well even in the presence of
diffuse edges due to the inherent competition between volumes (V
and V̄). This has been nicely illustrated on still-image (2-D) seg-
mentation in a recent paper by Chan and Vese [23]. Clearly, the
formulation (1) permits only a detection of change; it leads natu-
rally to volume detection (e.g., detection of static 3-D objects [21],
or detection of moving objects in x− y − t space [19]). However,
it cannot handle volume segmentation, i.e., explicit division into
sub-volumes with different characteristics such as different texture
or different motion. The volume-competition formulation (5) can
handle two different types of motion, and can be extended to mul-
tiple motions in similar way as proposed in [13] for 2-D case.

In order to solve for ~ς we apply the Stokes’ theorem (
∫

V
dω =

∫

∂V
ω) in 3-D, and this leads to the surface evolution equation:

∂~ς

∂t
= [α − |I(x, t) − I(x, t − 1)| + λκm]~n. (6)

Ignoring the curvature, α > |I(x, t)−I(x, t−1) will result in the
surface shrinking and thus relinquishing the point ~ς(x, t), while
α < |I(x, t) − I(x, t − 1) will cause the surface to expand thus
englobing this point. Clearly, there will be a competition between
two forces, one related to V and the other related to V̄ , that will
claim or relinquish 3-D points on and around the surface ~ς , thus
the volume competition name. As for the curvature κm, it plays the
role of a smoothing filter with respect to surface point coordinates.
For sufficiently large λ, the curvature term will assure simultane-
ously smooth boundaries of individual-frame segmentations and
temporal continuity of such boundaries (no large changes in seg-
ment shapes between consecutive frames). This can be viewed as a
generalization of tracking of individual-frame segmentations; our
approach is based on a sound mathematical model rather than a
sequence of ad hoc steps. The inherent space-time continuity of
the volume V is what distinguishes our approach from methods
supported on 2 frames only.

The active-surface evolution equation (6) suffers from the same
deficiencies as active-contour equations. Therefore, we embed the
active surface ~ς into a hyper-surface u (in 4-D space) which leads
to the following level-set evolution equation:

∂u

∂t
= F‖∇u‖ = [α − |I(x, t) − I(x, t − 1)| + λκm]‖∇u‖.

We implement this equation iteratively using standard discretiza-
tion as described in [6]. In each iteration we calculate the force F
at zero level-set points, extend this force using the fast marching
algorithm by solving ∇u · ∇F = 0 for F , update the surface u,
and re-initialize the surface using the fast marching algorithm by
solving ‖∇u‖=1 (signed distance).

5. EXPERIMENTAL RESULTS

We have applied the proposed algorithm to the segmentation of
several image sequences. Fig. 1 shows results for two sequences:
natural-texture, synthetic-motion, test sequence Bean in which a

“bean”-shaped object undergoes accelerated zoom and rotation,
and MPEG-4 test sequence Akiyo with small head-and-shoulders
motion. In both cases, the segmentation was computed jointly over
30 frames, with α=0.5 and λ=0.01 for Bean and α=0.5 and λ=0.1
for Akiyo. The above results show that an excellent object-shape
recovery and tracking between frames are possible without using
intensity edges explicitly. Moreover, in case of the Bean sequence
the results are very accurate despite significant motion (over 70
pixels, plus zoom-in). Note the clear increase of the size of the
“bean” and its rotation. The shape evolves consistently over time
despite no explicit tracking. Similarly accurate result has been
achieved for Akiyo although in this case motion has been much
smaller.

6. CONCLUSION

The proposed approach shows clearly promise as a tool for con-
sistent frame-to-frame segmentation of image sequences. The cur-
rent models are very simple and do not permit moving background
(e.g., due to camera motion) or multiple objects. Also, the com-
putational complexity of this approach is significant as we did not
incorporate narrow-banding or hierarchical implementation. We
are currently addressing these and other issues in order to improve
the flexibility and performance of this approach.
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