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ABSTRACT

This paper! presents an original partition projection method
for video sequence segmentation. Let us consider that the
partition P(t) of the frame I(t) is already available. The
aim of the method is to detect the local changes between
the frames I(t) and I(t+1). These changes are processed as
uncertainty areas when initializing P(t+1). These areas are
segmented and resticked to the unchanged parts to give the
final partition P(t+1). The detection of uncertainty areas is
achieved by two block-matching processes. First a global
block-matching is used to detect drastic changes between
two successive frames. Then a local block-matching algo-
rithm applied on specific blocks centered on the partition
borders allows to declare uncertainty pixels in the neigh-
bourhood of the new borders. The local segmentation of un-
certainty areas is facilitated by using the irregular pyramid
segmentation based on an adjacency graphs representation.

1. INTRODUCTION

The problem of temporal coherence is widely studied in
video segmentation techniques [2] [7] [8]. The reason is
that many applications really need to track objects. Once
the partition of the first frame is available, all these methods
achieve a motion estimation between the current frame and
the next one to generate the next partition. The motion in-
formation can be used to transmit markers in a morpholog-
ical watershed algorithm [8] or to predict the initial contour
of a video object [2] [7]. In our approach, we use motion
estimation to define precisely changes within the partition
in order to update the partition locally, from frame to frame.
The block-matching algorithm is a good compromise be-
tween the computational cost and the quality of measures
for this task. That is why we use jointly two complemen-
tary block-matching processes to detect which are the areas
of the projected partition to update (let us call them uncer-
tainty areas) and which are the parts of the partition that will
remain unchanged. The pixels of the uncertainty areas will
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be resticked to the unchanged parts of the partition with the
irregular pyramid segmentation.

Section 2 describes how the irregular pyramid works to
provide the initial partition. We will see that its graph rep-
resentation can be useful as well for local segmentation in
the next frames. The two different uses of block-matching
to detect changes are presented in section 3. Section 4 is de-
voted to the building of the new partition. We will discuss
about some results in section 5.

2. SPATIAL SEGMENTATION

The irregular pyramid segmentation is applied on the first
frame of the sequence to obtain the initial partition. This
partition could also take into account the hierarchical de-
composition of the original image to extract the best parti-
tion according to the user’s need. Although the first partition
could be obtained with any other segmentation technique,
even by hand, we shortly describe the principle of the irreg-
ular pyramid segmentation since we will also use it later to
segment some parts of the images.

The irregular pyramid [5] is a region growing segmenta-
tion technique for still images. Its data structure is dedicated
to its particularities: each level of the pyramid is represented
both with a graph and a partition (fig 1.a and b). Once built,
the pyramid is a stack of partitions of the original image, and
a given level or a combination of several levels is a proper
segmentation at a given resolution [1].

At the beginning of the construction, an adjacency graph
(vertices linked with edges) is obtained using the pixels of
the original image as initial vertices. Then the following
steps correspond to the construction of a new level:

From the adjacency graph a similarity graph is built,
linking each pair of similar adjacent vertices.

A local decimation process performed on the similarity
graph permits to locally choose the vertices of the next level
(survivors). They will be the regions of the next level.

In the grouping phase, non-surviving vertices choose
in their neighbourhood the most similar surviving vertex to
be linked to, in order to form bigger regions in the next level
through sons-to-father links (fig 1.c).
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Fig. 1. The three structures defining the irregular pyramid
(with a 4 x 4 image sample)

For this new level, an adjacency graph is redefined to
fit the neighbourhood of the new graph.

This new level is now available to be processed in its
turn to provide the next level and so on, until the apex of the
pyramid is reached when no more fusion can be performed.

3. PROJECTING THE CURRENT PARTITION

Our projection method is based on the well known block-
matching algorithm used in many video coding applications.
We recall briefly how it works.

3.1. Prediction by block-matching

Let us consider two successive frames I(t) and I(t+1). We
can build a prediction of I(t+1) from I(t) with the block-mat-
ching algorithm. There are two possibilities: the backward
mode and the forward mode.

In the backward mode, the algorithm involves the divi-
sion of I(t+1) into small square blocks. For each block of
pixels, a search is conducted within a confined window in
I(t) to locate the best matching block. Then a prediction of
I(t+1) is approached by replacing each block by the corre-
sponding one coming from I(t). Some differences (called
prediction errors) can occur between I(t+1) and its predic-
tion.

In the forward mode, the division into regular square
blocks is applied to I(t). A motion vector is calculated for
each source block of I(t) by searching the best matching

block in I(t+1). Then a prediction of I(t+1) is given by pro-
jecting each block according to its motion vector. In this
case, the predicted image contains uncovered areas either
because of the overlapping between projected blocks or be-
cause of drastic changes between I(t) and I(t+1) that prevent
from matching one or more blocks.

In the following we consider only the forward mode.
We use the Block Sum Pyramid Algorithm (BSPA) [3]. It
is based on a fast motion estimation method called the suc-
cessive elimination algorithm (SEA) [4], which can achieve
the same estimation accuracy as the Full Search Algorithm
(FSA) while requiring less computation time. Small blocks
are used in order to have a more accurate estimation (8x8
pixels for QCIF format videos). When performing the block-
matching, a similarity threshold is used to avoid attributing
a wrong motion vector to a block.

In the following two subsections, we present how the
block-matching method is used, first to detect uncovered ar-
eas and then to predict the position of the borders in P(t+1).

3.2. Global block-matching: Uncovered areas detection

The global block-matching used is a classical block-match-
ing in forward mode applied on the whole image I(t). Firstly
the motion between I(t) and I(t+1) is estimated. Then a pre-
diction of I(t+1) is achieved by projecting all the blocks of
the current frame. As we have seen in the previous para-
graph, this predicted image may contain uncovered areas.
Most of these areas are due to motion estimation errors or
to the modification of the scene content (appearance / disap-
pearance of an object). Indeed when a new object appears,
it can’t be predicted from the content of the current frame.
Figure 2 illustrates this process: two successive frames (fig
2.a and b) show the case of a scale change with a new object
appearance. Figure 2.c gives the prediction of I(t+1) where
pixels of the uncovered areas remain white. Let M/ be the
mask of these uncovered areas (fig 2.d).

3.3. Local block-matching: Border projection

To achieve a partition projection, the motion vectors found
between I(t) and I(t+1) are applied to the partition of the
segmented image P(t) (fig 3.b). We notice that this projec-
tion is not accurate close to the contour of the regions. We
could expect this result because the matching of blocks con-
taining contours is more difficult. To affine this estimation
the authors in [6] propose to subdivide non homogeneous
blocks.

In our approach we perform locally a second block-mat-
ching between I(t) and I(t+1), taking into account only spe-
cific source blocks. These blocks are accurately disposed
in I(t), at places where region borders are in P(t) (fig 3.c).
The block-matching algorithm is then performed between
I(t) and I(t+1) on these blocks. This method improves both
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Fig. 2. Uncovered areas detection

the number of matches and their quality. The motion vectors
obtained with this second block-matching are applied to the
corresponding blocks of the partition P(t) to provide another
projection. An example of a projected partition using only
blocks centered on the borders is presented in figure 3.d. If
we compare this projected partition to the one presented in
figure 3.b, we can notice an improvement of the projection
quality.

4. BUILDING THE NEXT PARTITION

Using the current partition P(t), we build P(t+1) by seg-
menting I(t+1) locally only where it is necessary: We define
some uncertainty areas in I(t+1) that we need to segment at
the pixel level. This section presents how the next partition
is prepared and updated.

4.1. Preparing the next partition

To prepare P(t+1) we build an uncertainty area mask com-
bining two masks obtained through the two block-matching
algorithms. The first one, M, is described in paragraph 3.2
contains uncovered areas (fig 2.d). It is necessary to seg-
ment these areas to take into account the appearance of new
object in the partition.

Even if the region borders have been correctly predicted
during the local block-matching, it is important to refine
their exact localisation. So the pixels of the projected bor-
der blocks need to be resegmented. Let M» be the set of
theses pixels. Figure 4.a shows such a mask. Nevertheless,
as we can see on this example, the above mentionned blocks
don’t form closed contours. It happens when strong object
deformation or zoom-in occur. That is why, a connecting
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Fig. 3. Local block-matching for partition projection
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Fig. 4. Detection of areas around projected borders

process must be applied to the projected blocks: The con-
nection of two successive blocks is obtained by filling the
smallest bounding box that contains these two blocks. We
have then a closed contour for each region of the projected
partition (fig 4.b).

Then the two masks M; and M5 are combined with a
logical OR to provide a unique mask of the uncertainty ar-
eas M (fig 5.a).

4.2. Updating the next partition

The final mask M of the uncertainty areas (fig 5.a) is applied
on the next original frame I(t+1) to build a partition. In this
partition, each uncertainty pixel takes the value of the origi-
nal pixel, whereas the connected components of unchanged
pixels take the mean value of the corresponding original
pixels. An adjacency graph gathering the independent pix-
els and the existing regions is initialized. Attributes (area,
standard deviation...) are computed for each vertex of this
graph. Then this adjacency graph can be processed through
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Fig. 5. Updating the next partition

the different steps of the pyramid segmentation (section 2)
in order to merge progressively the uncertainty pixels to the
already segmented regions. So the extension of the labels
into the new frame is warrant. Besides we have to notice
that the pyramid model allows the creation of new regions
from uncertainty pixels (new object segmentation). The up-
dated partition of our example is presented in figure 5.b.

5. RESULTS

At the moment, we have limited our tests on simple se-
quences to check the good evolution of the algorithm in
particular cases. The local block-matching algorithm al-
lows to track objects that undergo a local deformation or
a zoom-in effect. Rotation prediction which is a weakness
of block-matching is managed by the global block-match-
ing that forces a segmentation of the border areas where the
matching fails.

We have applied this algorithm on real sequences, but
we need to simplify the partition obtained with the irregular
pyramid before projecting it. With a complex partition, too
much pixels are declared uncertain and our partition pro-
jection becomes useless. That is why we plan to achieve
an interface allowing partition simplification by the user. In
the same way, if the motion present in the sequence is too
strong, uncertainty areas are too large in the projected parti-
tion. So we limited our study to sequences with low motion.

6. CONCLUSION

We have presented a preliminary approach on segmenting
image sequences with the irregular pyramid model: For that
we have developed a partition projection method based on a
double block-matching. The projection gives a coarse par-
tition of the next frame, which is the first level of the irreg-
ular pyramid. Since tests on simple partitions give convinc-
ing results, we plan to apply our method on more complex
sequences. This application will be used in the context of
user-assisted segmentation, indeed the user could simplify
the first partition to obtain more useful results. Besides we

notice that the multiresolution aspect of the pyramid can be
taken into account during the user interaction to select the
best resolution of semantic video object.
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