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ABSTRACT

This paper deals with some detection issues of watermark
signals. We propose an easy way to implement an informed
watermarking embedder whatever the detection function.
This method shows that a linear detection function is not
suitable for side information. This is the reason why we
build a family of non-linear functions named JANIS. Used
with a side-informed embedder, its performance is much
better than the classical spread spectrum method.

1. INTRODUCTION

We model the watermarking problem as follows. From an
original contentCo , an extraction function measures N fea-
tures ordered in a vector ro. This vector is modified by
a mixing function to create a watermarked vector rw =
F (ro, gw). w is the watermark signal whose variance is
set to one and g is the embedding strength. Usually, mixing
functions are additive (Eq. (1)) or proportional (Eq. (2)):

rw = ro + gw (1)

rw = ro ? (1 + gw) (2)

where ? is the product component by component. The in-
verse extraction function completes the embedding stage
creating a content Cw whose features vector is rw.

In this paper, we assume that the components of original
vectors are i.i.d. and distributed as N (0, σ2

ro
). This repre-

sents the reality for some watermarking techniques, but it
is also the simplest framework to carry out statistic studies.
Especially, it is widely believed that, with the Gaussian as-
sumption, the spread spectrum (SS) method is the optimum
scheme where the detector is a correlator. This is proven in
section 2.

The goal of the authors is to show that this belief is not
true. The rationale is the following one. First, the water-
marking channel is not a Shannon channel because the em-
bedder knows what noise will corrupt the transmission: it is
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the original content modelled by ro. It is obvious that the
embedder should take advantage of this knowledge. Section
3 shows how this can be implemented easily in a watermark-
ing scheme. But it turns out that correlator receivers are not
suitable for such a strategy. This is the reason why we build
a family of detection functions called JANIS (for ‘Just An-
other N-order side-Inform Scheme’). These receivers are
dedicated to fully take benefit of the side information. The-
oretical and experimental results show that JANIS is much
more efficient than the SS method.

2. THE CLASSICAL VIEW

The watermark detector is a device receiving unknown con-
tents whose features vectors are ru. Some have been wa-
termarked (hypothesis H1, vectors rw), others are in their
original form (hypothesis H0, vectors ro). Its output is a
binary variable ď which equals 1 (0) if the content is consid-
ered as watermarked (resp. not watermarked). This yields
detection errors. Pfa is the probability of false alarm that
ď = 1 when H0 is true. Pmd is the probability of a mis-
detection that ď = 0 whereas the content was watermarked
(H1 is true).

2.1. Neyman-Pearson strategy

The first thing to set when building a watermark detector is
to choose the right strategy. We list some alternatives.

To minimise the Bayesian risk. Denote

c = PfaCfaP (H0) + PmdCmdP (H1)

the bayesian risk where {Cfa, Cmd} are the costs of the de-
tection errors and {P (H0), P (H1)} are a priori hypothesis
probability. This strategy is not suitable for watermarking
as these a priori probabilities are not known in practice.

To minimise the maximum risk. Denote

c? = PfaCfaP
?(H0) + PmdCmdP

?(H1)

the maximum risk where {P ?(H0), P ?(H1)} are probabil-
ity of the worse case, i.e. maximising the Bayesian cost.



This strategy is also hard to implement as defining a cost
for each error is not easy in practice.

To maximise the detection power while bounding the
probability of false alarm above . Denote Pp = 1−Pmd the
detection power. The Neyman-Pearson strategy is to max-
imise Pp while Pfa ≤ Psl (Psl is the significance level). It
reflects correctly what watermarkers are doing in practice:
e.g. Psl values appear in the calls for proposal of CPTWG1

and SDMI2.
According to Neyman-Pearson theorems, the best test is

then based on the following sufficient statistic [1]:

dNP = log
pRw (ru)

pRo(ru)
(3)

In the watermarking framework, the mixing function is usu-
ally inversible (ro = F−1(rw, gw)) so that pRw(ru) =
pRo(F

−1(rw, gw))/J where J is the determinant of the
Jacobian matrix of F−1(.). Finally, the tested statistic is
compared to a threshold Thr:

ď =

{
1 if dNP = log

pRo (F−1(ru,gw))
JpRo (ru) > Thr

0 if dNP ≤ Thr
(4)

Thr is set so that E{dNP > Thr|H0} = Pfa ≤ Psl.

2.2. Locally most powerful test

The problem is not correctly modelled since g is not con-
stant in practice. There are contents that perceptually bear
a relatively strong embedding distortion, whereas others are
extremely sensitive and support only small values of g. The
hypothesis are then :

H0 : g = 0 versus H1 : g > 0 (5)

The detection is no longer a simple hypothesis test but a
one-sided test. The behaviour the Neyman-Pearson test de-
pends then on the pdf of ro. As stated in Eq. (4), the
value of g, which is, a priori, unknown from the detector,
is necessary to measure dNP . For some very few pdf, this
is not important as the Neyman-Pearson test is always the
best ∀g > 0, i.e. it is uniformly most powerful. Yet, in the
general case, the test is only locally most powerful. Small
values of g are selected because the embedding strength is
small in practice and because contents are hardly distin-
guishable in that case. Making a Taylor expansion of Eq.
(4), a new tested statistic is defined as:

dLMP =
∂

∂g
dNP (g)

∣∣∣∣
g=0

(6)

The derivative of the log-likelihood in 0 usually replaces
dNP in tests detecting weak signals.
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2.3. Examples

Suppose the mixing function is additive (Eq.(1)) and that
the features are i.i.d. Then,

dLMP =

N−1∑

i=0

w[i]

(
−p
′
Ro

(ru[i])

pRo(ru[i])

)
(7)

Denote fNL(x) = −p′Ro(x)/pRo(x). The test is a non-
linear correlator as sketched in Fig. 1. If ro is a gaussian
r.v., then fNL(x) = 2x/σ2

ro and Eq.(7) is the classical cor-
relation statistic.

non-linear

function
Σ Thr>

<

w

ru fNL( ru ) d d

^

Fig. 1. Structure of a non-linear correlator

Suppose the mixing function is proportional (Eq. (2))
and the features are i.i.d. Then,

dLMP =

N−1∑

i=0

w[i]

(
−ru[i]

p′Ro(ru[i])

pRo(ru[i])

)
− w[i] (8)

Assuming w is centered then the last term can be forgot-
ten. Denote fNL(x) = −xp′Ro(x)/pRo(x) and retrieve the
non-linear correlator of figure 1. If ro follows a Weibull dis-
tribution parameterised by β, then fNL(x) = xβ . We find
the test proposed by J. Oostveen and al. [2].

3. A NEW STRATEGY

Somehow, the basic strategy in the watermarking field up to
now is to fix the embedding scheme and to try to optimise
the detection stage as we have seen in the last section. The
basic idea of this article is to do things the other way around:
we fix a detection function d ≡ D(ru) and try to optimise
the embedding stage. Actually,D(.) depends of a secret key
k, but to simplify notation we did not write it down.

3.1. Side Information

We present an intuitive way to maximise the detectability of
the presence of a watermark. The embedding function is as-
sumed to be additive. As the components of the watermark
signal are very small, we make a Taylor development to the
first order of the detection function:

D(rw) = D(ro + gw) ∼ D(ro) + gwT∇D(ro) (9)

We design D(.) such that E{D(ro)} = 0 as usually done
in watermarking. Then, to distinguish easily the hypothesis



H1 from H0, the goal is to maximise the value of D(rw).
For this purpose, we create w as follows:

w = K∇D(ro) (10)

where K is a scalar normalising the power of w to one.

3.2. Comparison

M. Costa introduced in 1983 a new communication paradigm
caracterised by a channel state known at the encoder only
[3], which is, in watermarking, the original content compo-
nent ro. To maximise the channel capacity, the watermark
signal w depends on this state contrary to the independent
creation of w as done classically in Shannon paradigm. This
notion was applied to watermarking by B. Chen [4], J. Eg-
gers and al. [5]. On the other hand, I. Cox and al. also
thought about side information to increase the robustness of
watermarking techniques [6].

Our study is clearly inspired by these previous works.
But, we provide a way to optimise (to the first order) what-
ever the detection function is. Especially, we show that
some detection functions give better results than others:
e.g., linear functions do not provide any enhancement. Im-
provements of the article [6] are not so impressive because
their detection function is not sufficiently non-linear.

Others advantages stems from the dependence of w on
ro. For copyright protection applications, it is a good point
that the watermark signal is dedicated to one content to
avoid the ‘copy attack’. For video contents, it is danger-
ous to always add the same watermark signal as a pirate
could estimate it averaging frames. It is also dangerous to
add a watermark signal that is evolving in time too fast in
low-motion videos as a pirate could erase it with a time low-
pass filter. Thanks to its dependence, our watermark signal
follows the original content time evolution.

4. JANIS

JANIS is a family of detection functions {Dn(.)}. The
larger the integer n is, the less linear Dn(.) is.

4.1. Correlator

To explain why we create the JANIS scheme, we show that
the classical correlator function used in almost all symmet-
ric watermarking techniques is not suitable for side infor-
mation. The detection function is just a correlation with a
secret signal a: D(ru) = ru

Ta/N . The gradient is then
fixed ∇D(ro) = a/N . It means that the watermark equals
the secret signal a whatever the state of the channel, i.e. no
attention is paid to the value of ro.
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Fig. 2. JANIS detection function

4.2. n-order statistic

Let us describe the Dn(.) function. First, components of
ru are multiplied by components of a secret vector a ∈
{−1, 1}N : r = ru ? a. Then its components are ordered
according a secret arrangement in a n×N/n matrix (n ≥ 1
and we suppose N/n is an integer). Its elements are multi-
plied each other in a row and then added to yield d. This is
sketched figure 2. d is the following polynomial function.

d = Dn(ru) =
1

N

N/n−1∑

k=0

n−1∏

j=0

a[ij,k]ru[ij,k] (11)

As each component appears in only one monomial term
composing d, its gradient is easy to calculate:

∇D(ro)[il,k] =
a[il,k]

N

n−1∏

j=0,j 6=l
a[ij,k]ro[ij,k] (12)

Notice that for n = 1, we are back with a classical SS
as dealt in subsection 4.1.

4.3. Efficiency

If d is Gaussian distributed, then the power of the test is:

Pp = Q

(
σd|H0

σd|H1

Q−1(1 − Pfa) − ε
)

(13)

where Q(.) is the cdf of N (0, 1) and the efficiency ε =
(µd|H1

− µd|H0
)/σd|H1

. Larger efficiencies give more pow-
erful tests. Equations (15) and (16) provide the mean and
variance of d under both hypothesis. M (k) is kth moment
of N (0, 1) and G = g2/σ2

ro . This leads to the efficiency
ε[n] of Dn(.) which equals to the first order:

ε[n] =
√
nGN + o(

√
G) (14)

This efficiency, better than SS one by a factor
√
n, has never

been reached before in the watermarking field!



µd|H0
[n] = 0 ; σd|H0

2[n] =
σ2n
r

nN
; µd|H1

[n] =
σnr
n

n∑

s=0

Csn
√
GsM (s+ 1)n−sM (s− 1)s (15)

σd|H1

2[n] =
σ2n
r

nN

(
n∑

s=0

CsnG
sM (2(s+ 1))n−sM (2(s − 1))s + (2

√
G)nM (n)n

)
− n

N
µd|H1

2 (16)
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Fig. 3. experimental (solid lines) and theoretical (dotted
lines) JANIS ROC curves forG = −26dB

4.4. Experimental results

Yet, d is not Gaussian distributed if n > 1. Indeed, the
smaller n is, the closer to a Gaussian distribution is the
pdf of d. We draw the experimental ROC curves Pp =
Pp(n, Pfa) for 1 ≤ n ≤ 5 and compare them to the theo-
retical functions given by Eq. (13). Experiments were done
with N = 2400 and g = 0.05. Figures 3 and 4 show how
JANIS function with n > 1 are much more efficient than
classical SS (n = 1). For example, at Psl = 10−4 and
G = −26dB, Pp[1] = 0.1 whereas Pp[4] = 0.75! In the
same way, at Psl = 10−4 and Pp = 0.5, there is a loss of
6dB between JANIS n = 4 and SS! As foreseen, experi-
mental results leave theoretical calculus as n goes larger.

Experimental results on a large images data base will be
provided in the final version. The font size will be 9 point.

5. CONCLUSION

The authors try to renew the classical representation of wa-
termarking, proposing a scheme focusing on side informa-
tion. The JANIS family is extremely promising as it yields
very good detection performances but it also has some in-
teresting properties useful for some dedicated applications.
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Fig. 4. experimental (solid lines) and theoretical (dotted
lines) JANIS power functions for Psl = 10−4
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