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Abstract. We describe a method for inferring vascular (tree-like) struc-
tures from 2D and 3D imagery. A Bayesian formulation is used to make
effective use of prior knowledge of likely tree structures with the observed
being modelled locally with intensity profiles as being Gaussian. The lo-
cal feature models are estimated by combination of a multiresolution,
windowed Fourier approach followed by an iterative, minimum mean-
square estimation, which is both computationally efficient and robust. A
Markov Chain Monte Carlo (MCMC) algorithm is employed to produce
approximate samples from the posterior distribution given the feature
model estimates. We present results of the multiresolution parameter es-
timation on representative 2D and 3D data, and show preliminary results
of our implementation of the MCMC algorithm '.

1 Introduction

The problem of inferring vascular structure from two and three dimensional
image data is an important one, especially in the area of surgical planning,
which requires a combination of efficient computation and a method of using
prior knowledge. Previous work in the area has tended to focus on the modelling
of specific vascular features, using deformable templates [7, 3] or to use heuristic
approaches such as adaptive thresholding or level sets [4, 6].

The aim of the work described here is to formulate a general method for
the inference, which can be applied in two or three dimensions and makes ef-
fective use of prior knowledge, yet which is sufficiently general to be applied
to a wide range of problems. The common statistical methods for such medical
image analysis have typically used likelihood techniques, such as Expectation-
Maximisation [11,9]. Although iterative, EM methods can be efficient compu-
tationally, but provide only a limited way of incorporating prior knowledge.
A general and powerful way of including further prior information is to use a
Bayesian method, such as mazimum a posteriori (MAP) estimation. The diffi-
culty with Bayesian techniques is essentially a computational one: they typically
require the use of Markov chain Monte Carlo (MCMC) algorithms, which may
run for hundreds of thousands of iterations to yield reliable results [5]. This
has restricted their use in applications involving large data sets such as medical
images.
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The method we have adopted is grounded in statistical inference, combining
local likelihood maximisation using a Gaussian model of the spatial intensity pro-
file, and global structure determination using a Bayesian technique derived from
a general model of vasculature as a collection of tree structures. By approach-
ing the problem in this way, we can keep the efficiency of likelihood techniques,
while exploiting the power and generality of a Bayesian approach. To improve
the efficiency and robustness of the computation, we have adopted a multireso-
lution method, similar to that described in [12]. After a brief description of the
estimation algorithms, we present results of two and three dimensional structure
inference on real data. The paper is concluded with some observations on the
technique.

2 Local structure estimation

We approximate the local shape of a vessel as being linear (lines and cylinders)
and employ an iterative fitting technique to minimise the sum of squared resid-
uals between the data f and our model g. The global shape of an object, in
general, cannot be modelled by a single such primitive structure, hence the need
to localise the model to a small neighbourhood.

In the continuous spatial domain, if a feature such as a line (or cylinder)
is windowed by a smooth function w(), then it can be approximated by a n-
dimensional Gaussian function:

9(2(6) = Aexp(—(z — p)"C ' (z - p)/2) ey

parameterised by @ = {A, u,C} with amplitude A, centred on p and the co-
variance matrix ¢ = RTC'R, where C' is the diagonal matrix of variances
representing the extent of the function in the major axes and R is the matrix of
rotation from the feature orientation vector, to the x-axis.

To obtain maximum likelihood (ML) estimates of the parameters, the win-
dowed image data, f,(x) = w(x)f(x), are modelled as conditionally normal,
given the local model f,(z) ~ N(g(z|©),0?). To maximise the likelihood, we
minimise the sum of squared residuals between the windowed data in an image
block of size B™ and the model:

B™

X = 223 (6(al0) ~ fulw))? ?)

P

From an initial estimate of ©g = {Ao, po, Co} at iteration ¢t = 0, we calculate
the sample estimates for © weighted by the inner product of f,, and g using the
iterative scheme (dropping the position subscript @ for clarity):

Ay =) fu9(80)/ D 9(01)9(6:) ®3)
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The initial estimate @g is obtained by using the multiresolution Fourier
Transform (MFT) [12]. The windowed Fourier transform of f, () < fu(u)
is also a Gaussian with the spectral energy distribution dependent on the type
of feature (see [10]). The principal components of the moment of inertia tensor
I of the spectral energy:

=4 5w lfutw)f (6)

where B is the block size, gives n eigenvalues A; > .. > A,, which are inversely
related to the covariance, C, and the spatial orientation of a linear feature is
that of the eigenvector associated with the largest eigenvalue A;.

The first derivative of the phase spectrum, ¢(u), will be related to the posi-
tion or centroid p of the spatial function if the window function for the image
block is real and even, via the Fourier shift theorem [8]:

¢ (u) = arg(f,(u) = —pu (7)

The feature centroid p can therefore be estimated by taking average pairwise
correlations between neighbouring coefficients along each of the n axes

poi = 5= 3 Fuli = 1) fulu)” ®

If fu(x) is locally Gaussian and noise free, then @y will be close to Opr. In
general, the iterative estimation greatly improves the MFT estimate, converg-
ing rapidly (5-10 iterations) to a stable solution. Furthermore, the resulting x>
provides a useful measure of goodness of fit of the model to the data.

3 Inferring the global structure

To draw inferences about the global structure, we employ a Bayesian formalism:
the data are modelled as a random tree-like structure and we then use an MCMC
algorithm [2] to sample from the posterior distribution, which is conditioned on
the data. The sampling distribution is an approximate equilibrium of a random
process whose configuration space is the space of tree-like structures and whose
equilibrium is designed to be the target conditional distribution. As well as
gaining information about the global structure, variation in the posterior samples
enables us to quantify uncertainties about the image interpretation.

The prior distribution is that the global structure is a forest of a random
number of trees. Each such tree is a binary tree: branches divide only into two
sub-branches at a time. A physical realisation of such a tree needs each node to be
located in space. Unfortunately, the simplistic approach of displacing each node
from its parent by a Gaussian displacement of zero mean (a “random-walk” tree)
leads to a tangled local structure (left hand figure 1). We therefore introduce a
correlation by allowing the mean displacement to be a small linear multiple of
the displacement of the parent node from the grandparent node (an “AR(1)”
tree) (right hand of figure 1). To each node we then associate a Gaussian kernel
that represents the corresponding vessel segment.



The posterior distribution for a random number N of trees 71, ..., 7y is given
by

(11, 7al0) o B(N = 1) [T I powy$(@vlaq,n € AW)9 (0. 0parent())

i=1veTr;

X L(71,...,7|O), )

where pg, p1,p2 are the family size probabilities of the branching process and
v(v) is the valence of the node v. Moreover, ¢(z,|z,,n € A(v)) is the location
distribution of x, which depends on the location of its parent and grandparent
(if any) given by the ancestor set A(v). The distribution 9 (6, |0parent(s)) of the
Gaussian kernel parameters 6,, associated to each node v depends on the parame-
ters of the Gaussian kernel associated to its parent node. Finally, L(7y, ..., 7,|0)
denotes the likelihood of the forest given the local structure estimates © assum-
ing pixelwise iid white Gaussian noise. The simulation, whose configuration at

Fig. 1. Illustration of a random-walk tree and an AR(1) tree

any one time is a collection of random trees, is designed to have moves which
take it from one configuration to the next. These moves, some of which are illus-
trated in Figure 2, are: adding or deleting a tree, adding or deleting a twig at the
end of a branch; displacing a node; splitting a tree into two or grafting two trees
together into one; changing the parameters of the Gaussian kernel associated
with a node. As long as each move has an ‘opposite’ (e.g. add versus delete, split

Adding versus deleting atwig Displacement of anode Grafting two trees versus splitting a tree
Fig. 2. Illustration of some moves

versus graft) and the chances of each move are balanced against its opposite, it is
straightforward to compute the required equilibrium distribution and to design



the move probabilities to give the required posterior as equilibrium, using the
Metropolis-Hastings technique (MH) [5]. The MH method iterates in two steps:
the first proposes a move from the collection of moves and the second accepts or
rejects the move so as to ensure that the equilibrium coincides with the desired
posterior. Generally, the decision whether to accept or reject a move depends on
whether the resulting new tree will be a more adequate representation from the
posterior than the current tree.

The efficiency of the algorithm depends crucially on the proposed moves. As
all moves influence the likelihood only locally, the likelihood evaluation can be
implemented efficiently. Moreover, to avoid inefficiencies due to a large num-
ber of moves being rejected, our moves are guided by likelihood considerations:
the locality of a move is dependent on the amount of unexplained data in the
surrounding spatial region and the mean direction of a proposed branch seg-
ment resembles the direction of the data in the vicinity of the segment. This
approach is reminiscent of the Langevin Hastings algorithm, where proposals
are influenced by the gradient of the posterior, see [1]. Global structure that
can be inferred with high certainty locally will lead to a tree structure that is
stable over time, while low local certainty results in a volatile tree-structure that
alternates between different explanations for the global structure.

4 Experiments

Figure 3 illustrates results of the ML model estimation. We have used part of
a 2D retinal angiographic image size 404 x 404 pixels (fig. 3(a)) for our 2D
experiments. The background is first modelled as locally piece-wise linear and
subtracted from the original data prior to the estimating the Gaussian feature
parameter estimates. The orientation and position of the MFT feature estimates
which form the initial block parameter estimates, @y are shown in the centre
(fig. 3(b) and (c)), where the feature intensity is modulated by the goodness of
fit of the model to the data. Despite the noise, there is good correspondence of
the large scale arterial structure at block size B = 64. The background noise
becomes insignificant at block size B = 16 (fig. 3(c)). The right hand column
(fig. 3(d)-(e)) shows a data reconstruction of the 2D Gaussians in each block
(at corresponding block sizes) after the iterative ML estimation. Note that the
thickness of the vessels (the standard deviation of the model orthogonal to the
feature) are accurately modelled at both large and small block sizes. Clearly, at
lower spatial resolutions, the model cannot easily describe the presence of mul-
tiple vessels within the window, such as at vessel bifurcations, and the resulting
low-amplitude, isotropic Gaussians are locally the ‘best’ description of these re-
gions. However, these blocks can be identified from higher residual errors, x2 in
equation (2).

The 3D implementation of the ML model estimator is demonstrated in fig-
ure 4(a)-(e). The local structure estimator was run on the speed image of part
of a phase contrast MRA with cerebral blood vessels size 88 x 58 x 44 voxels
(fig. 4(a)). Illustrations of the MFT feature estimates and data reconstructions
using 3D Gaussians are shown at two (cubic) window sizes: B = 32 and B = 8
(fig. 4: top and bottom rows respectively). The major vessels are captured at the



Fig. 3. Left: (a) 2D retinal angiogram size 404 x 404 pixels. Centre: MFT feature
estimates @ for block sizes (b) 64 and, (c) 16. Right: Reconstruction of data from
model parameters estimates @ for block sizes (d) 64 and, (e) 16.

lower resolution (fig. 4(b)-(c)) while the finer vessels can be seen in figure 4(d)-
(e). Note that at both scales, as with the 2D retinal example, the vessel diameters
are correctly estimated.

To demonstrate the utility of the use multiple window sizes, we generated a
a multi-level data reconstruction after a simple top-down scale selection based
on the normalised block residual errors, figure 5. In this reconstruction, we used
4.4% of the parameters sets, @y, from a total of 13596 across 4 block sizes.
This reconstruction is able to capture both large and small local structures in
the data.

To infer global structure we have used an MCMC algorithm on the 2D retinal
data to sample the posterior distribution in (9) using the Gaussian estimates
(figure 6). These show that the method does indeed capture significant global
structure.

5 Conclusions

Some encouraging preliminary results have been achieved using the approach
described in section 3, demonstrating its potential for modelling vascular struc-
ture globally in a computationally efficient way. Fine-tuning the algorithm will
lead to significant improvements. These will include, for example, the use of the
local estimates to produce initial configurations for the MCMC algorithm, using



Fig. 4. (a) Maximum intensity projection of part of a MR angiogram depicting cerebral
blood vessels size 88 x 58 x 44 voxels. Top: MFT feature parameter estimates @p at
window sizes (b) 32 and (d) 8 showing feature orientation and position. Bottom: Data
model based on block-by-block summation of local Gaussian models @, at window
sizes (c) 32 and, (e) 8. The Gaussian amplitude has been made proportional to the
goodness of fit between the data and the model.

a posterior based on the multiresolution representation, such as shown in figure
5. Such improvements are currently being implemented.
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