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ABSTRACT

In this note, we employ a conformal mapping technique to
flatten tubular structures with multi-branches for visualiza-
tion of MRA and CT volumetric vessel imagery. This may
be used for the study of possible vessel pathology or virtual
colonscopy for polyp detection. The method is based on a
discrete Laplace-Beltrami operator to flatten a tubular sur-
face onto a planar polygonal region in an angle-preserving
manner. In this method, a thinned prunned medial surface
(or skeleton) is used for the vessel partition.

Keywords: flattening maps, skeleton, conformal map-
pings, MRA brain imagery

1. INTRODUCTION

Recently, there has been some interest in various techniques
for surface deformations, and in particular, the flattening of
highly undulated and branched surfaces. For example, flat-
tened representations of the brain surface are very impor-
tant in applications such as functional magnetic resonance
imaging by showing the details of neural activities within
the folds of brain surface. A conformal mapping method
is proposed in [4] in the context of virtual colonscopy for
polyp detection. In [5], Y-shaped vessels are flattened in
a similar way to give a clear representation of several ge-
ometric surface characteristics such as the mean curvature
and Gaussian curvature. In this note, we consider the flat-
tening of vessels with multiple branches. The applications
of this method include lung nodule detection and coronary
vessel stenosis from CT imagery as well as the detection of
pathologies such as thrombosis in MRA brain imagery.

In [5], we formulated the algorithm of defining a cut on
the vessel surface with a single branch. In this note, we will
show how to extent this method to the flattening of multi-
ply branched tubes. The key points include how to cut the
whole vessel into segments and how to define appropriate
boundary conditions.

We now outline the contents of this note. In Section 2,
we give an overview of the ﬂattening method. In Section 3,
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we summarize the use of skeletons to cut the surface and the
determination of boundary conditions. Then in Section 4,
we describe the numerical method employed for construct-
ing the flattening map based on finite elements. Next in
Section 5, we apply it to some MRA brain vessel imagery.
Finally in Section 6, we discuss some possible future re-
search directions.

2. APPROACH TO VESSEL FLATTENING

In this section, we will give an outline of our approach for
the conformal flattening of a Y-shaped tubular structure (i.e.,
with only one branch point). The basic theory of Riemann
surfaces can be found in [3], and the relevant results of par-
tial differential equations can be found in [10}.

Assume £ C R represents an embedded surface (no
self-intersections), which is topologically a tube with two
tubular branches (see Figure 1). The tube has three bound-
aries, which are circles in topology. The boundaries are
named as og, 01 and o9, respectively. We want to construct
a conformal map [9], f : £ — C, which maps ¥ to a planar
polygonal-shaped regjon.

The first step of the construction of f is to solve a Dirich-
let problem Au = 0 on £\(c¢ U 01 U 02). The boundary
conditions should be chosen properly to guarantee that the
branch point z¢ (u'(zo) = 0) be located where the two
branch tubes meet.

We then define three smooth curves Cy, C; and C, run-
ning from zg to 0¢, 01, and o2, respectively (see Figure 1),
and such that these curves are along the gradient direction or
opposite direction to the gradient of u. The curve C'; meets
the boundary o; at point y;(i = 0,1,2). Since u'(z¢) = 0,
we can make C; and C} lie on a line in a neighborhood of
zo, while Cy is perpendicular to the line.

These curves define a cut on X. The cut and the orig-
inal boundaries define an oriented boundary B of the cut
surface:

- C - -
yogyo —C*OTO";MQ?A —C;l-’fog-gyzgyz —C*zzog?yo
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where —C; means running the boundary in the opposite di-
rection of Cj.

The second step of constructing the mapping function is
to calculate the harmonic conjugate to u by solving another
Dirichlet problem Av = 0, given the boundary values of v

satisfy

¢ Hv ¢ du
v(() = —ds = —ds 1)
(C) ‘/(-0 63 ¢o an

The proof that the mapping is one-to-one can be found in

[9l.

3. SKELETON AND BOUNDARY CONDITIONS

In this section, we will show how to use the skeleton to di-
vide a multiply branched vessel into several parts in order
to set the proper boundary conditions for the flattening. See
[6] for an extensive list of references about the skeleton.

The skeleton of a closed set A C R?2 is the locus of cen-
ters of maximal open balls contained within the set. Interest
in the skeleton lies in the fact that it provides a complete
and compact representation of an object, and contains both
local (e.g. local width) and global information (e.g. number
of holes) about the shape. 2D skeletons have been widely
used in numerous applications such as object segmentation
or generic object recognition and classification. 3D skele-
tons, also called medial surfaces, are becoming an important
tool in computer vision especially in medical imaging, for
segmentation, registration and statistical shape analysis.

We provide only a brief overview of our vessel tree ex-
traction procedure here; full details will be published in the
full version of this paper. The medial surface of the vessel
data was generated by the method described in [6]. The key
idea is to measure the average outward flux of the gradient
of the distance transform of the object, and to detect loca-
tions where this flux is negative. This is done in conjunction
with a topological thinning procedure in order to obtain thin
and topologically correct medial surfaces. The medial sur-
face is further thinned and pruned to generate a 3D curve
with branches as shown in Figure 2.

The resulting curve is then segmented into curve points,
branch points (marked by a blue star) and end points (marked
by a red star). One of the end points is arbitrarily set to be
the root and the other end points to be /eaves. The root is
assigned a value 0 and the value of a Jeafis determined by
the length of the curve from it to the root. These values are
taken to be the boundary values in solving the Laplace equa-
tion for the harmonic function u as described in the previous
section. Finally, the “vessel tree” is cut into several seg-
ments, each containing a Y-shaped structure. By using this
partitioned skeleton as a reference, we can easily divide the
whole vessel into several parts, each having only one branch
point.

4. NUMERICAL METHOD FOR FLATTENING

In the previous section, we have partitioned the whole ves-
sel into parts, each topologically being a Y-shaped tube.
Here we will summarize the numerical approximation for
the mapping function of each part using a finite element
method [7]. More details can be found in [5]. In [1] and [4]
we described related methods for brain flattening and colon
flattening, respectively. The method used for vessel flatten-
ing is similar to them. However, due to the differences in
topology, the boundary conditions have to be changed.

In this section, we assume that ¥ is a triangulated sur-
face. Let PL(X) denote the finite dimensional space of
piecewise linear functions on ¥. Then we define a basis
{¢v} for PL(X). For each vertex, there is a corresponding
piecewise linear basis function which is 1 on this vertex and
0 on all other vertices, i.e.

pv (V) = 1,
pv (W) oLwW#£V, (@
¢v is linear on each triangle.

Any function u € PL(X) can be approximated as the
linear combination of these basis functions. The coefficients
are the values on vertices:

u= Zuvtbv- 3
v

What we are looking for is a flattening function f that is
continuous on ¥ and piecewise linear on each triangle. It is
known [10] that the solution to the Laplace function Au = 0
is the harmonic function « which minimizes the Dirichlet

functional 1
D(u) = & / / \VupdS
2/ Js

Uloug = Qo5 U5y = 01, u|0ug = ay 4

It can be proved [1] that « is the minimizer of the Dirich-
let functional, if for each vertex X\ (oo U 01 U 03),

Dvwuw =— > a Y Dyw (5

WeE\(ooUai1Uoz) i=0,1,2 Weo;

For any pair of vertices V and W, Dy w is defined as

Dyw = / / Vv - VéwdS ©)

It is easy to see that Dy = O unless V and W are con-
nected by an edge in the triangulation. As shown in [1], we
suppose VW is an edge belonging to two triangles VIW X
and VWY From the theory of finite element methods, we
know that for V # W

1
Dyw = -3 (cot LX + cot LY) )
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where X is the angle at the vertex X in the triangle VIW X
and £Y is the angle at the vertex Y in the triangle VWY

Dyy = - Z Dyw )
WAV

The computation for v, is similar to that of u, using
the boundary conditions obtained from (1) derived from the
Cauchy-Riemann equations.

5. COMPUTER SIMULATIONS

We tested our algorithm on a data set provided by the Sur-
gical Planning Lab of Brigham and Women's Hospital. The
data set is a 256 x 256 x 47 MRA brain image.

First, using the segmentation method of [2, 8] we found
the surface of the vessel. We then used the Visualization
Toolkit [11] to generate a triangulation of the surface, which
was smoothed by using a version of the mean curvature
flow. The triangles making up the ends of the tubular sur-
face were removed to produce an open-ended tube.

Next, as described in Section 3, we generated the (thinned,

pruned) skeleton for the vessel and then partitioned it and
assigned values for the end points. By using this partitioned
skeleton as a reference, we obtained several sections of Y-
shaped vessels. (In this example, we partitioned the original
vessel into three Y-shaped sections.)

Then, as described in the previous section, for each seg-
ment of the vessel, we solved the Dirichlet problem for w,
which is the real part of the conformal flattening function.
We then found the branch point where the gradient is zero
and defined a cut as in Section 2. The boundary values of the
conjugate function v were obtained by (1) according to the
Cauchy-Riemann equations. We then solved for v, which
is the imaginary part of the mapping function. Hence, we
could conformally flatten the resulting cut surface onto a
polygonal region of the plane. The mapping results of all
segments were put together to give a global view of the ves-
sel surface. Some of the segments were shifted in the verti-
cal direction to give a better visualization.

We caleulated the mean curvature and: Gaussian curva-
ture on each point of the surface. The points on the vessel
surface were then painted according to the corresponding
curvature. We applied the same colors to the flattened im-
age on the plane. This gave a way to visualize the whole
structure of the vessel surface at the same time.

In Figure 3 and 4, we show the triangulated surface
of the vessel colored by its mean curvature and Gaussian
curvature, respectively. Figures 5 and 6 are the flattened
surfaces whose corresponding points have been painted by
mean curvature and Gaussian curvature as described before.
Although these images show the curvature characteristics,
other geometric quantities, such as the thickness of the ves-
sel wall, can also be visualized by this method.

6. CONCLUSIONS

In this note, we presented a high-level procedure for the
construction of an angle-preserving flattening map of a mul-
tiply branched vessel surface derived from volumetric MRA
data. The method is based on conformal geometry and har-
monic analysis. We also provided a numerical approxi-
mation that finds the mapping based on a finite element
method.

While we have successfully mapped a multi-branched
vessel system, the mapping function ceases to be continuous
in the areas close to the cuts of the vessel (i.e., the common
part of two neighbor Y-shaped sections). We intend to rem-
edy this by directly flattening the entire multiply connected
structure. There are certain numerical problems with do-
ing this on the triangulated surfaces on which we are work-
ing at this point. We are now studying how to circumvent
these problems as well as how to apply this methodology to
various types of medical imagery for better visualization of
structures, e.g., lung nodules detected in CT data.
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Fig. 1. Mapping a Y-shaped vessel onto the plane.

Fig. 3. Mean curvature of the vessel.
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Fig. 2. The skeleton of a multi-branched vessel
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Fig. 5. Points colored according to mean curvature on flat-
tened vessel.

Fig. 6. Points colored according to Gaussian curvature on
flattened vessel.
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