TEXTURE ANALYSIS: AN ADAPTIVE PROBABILISTIC APPROACH
Karen Brady, lan Jermyn, Josiane Zerubia

Ariana, joint research group CNRS/INRIA/UNSA
INRIA, 2004 Route des Lucioles, B. P. 93
06902 Sophia Antipolis Cedex

France
Firsthame.Lastname@sophia.inria.fr

ABSTRACT analysis tool. In [6], packets were used in a classification
experiment on natural textures. Since [7], many attempts

Two main issues arise when working in the area of texture have been made to adapt the wavelet (or wavelet packet)
segmentation: the need to describe the texture accurately by - pt th P
decomposition to the underlying structure of the texture, for

capturing its underlying structure, and the need to perform
analyses on the boundaries of textures. Herein, we tackleexample [8] and [9], but these methods have not been devel

these problems within a consistent probabilistic framework. Ope\(/jVW'tQ:jn a cc?[ﬂerent profbtab;hstuzjfram.e\i\./ork. ithi b
Starting from a probability distribution on the space of in- € address theissue ottexture description within a prob-

finite images, we generate a distribution on arbitrary finite abilistic framework. Starting from probability distributions

regions by marginalization. For a Gaussian distribution, the fpr infinite textures, in this paper assumed Gaussian, we de-

computational requirement of diagonalization and the mod- rive the distribution for the texture ona finite region. This
elling requirement of adaptivity together lead naturally to leads naturally to a class of adaptlv_e wavelet packet mod-
adaptive wavelet packet models that capture the ‘signiﬁcante:S Fhat gaptlJlre th? s(,jt.ru.gture_ of a given textulre, for exarr:”n -
amplitude features’ in the Fourier domain. Undecimated P ellts principle perio icities, na rl’nanlner.?na _ogousi to the
versions of the wavelet packet transform are used to diag-W0 d decomposition [10]. A simple classification rule en-

onalize the Gaussian distribution efficiently, albeit approxi- ?hb;ej ds;(rizv': g}arizl:g:ig?nn ﬁ’é;?ee dlrr:;gremv(\;zgsretamlng
mately. We describe the implementation and application of 9 P P :

this approach and present results obtained on several Brozj Tlhe pap(ir |fs organlzecli asl fOIIOV¥.S' S3ect|ond2 de.tsllshthe
datz texture Mosaics. evelopment of our models. In section 3, we describe how

we learn the model parameters. Section 4 describes the ap-

plication of our models to the segmentation of textured im-
1. INTRODUCTION ages. In section 5, we show results of the segmentation pro-

) . ) ] cedure on Brodatz [11] texture mosaics. Finally, in section

Texture plays an |mpo_rtant role in the analy_sls of images. 6, we conclude and discuss future work.

The need to describe it accurately forms an integral part of

many classification, segmentation, and retrieval methods in

various application areas [1]. Over the years, many different 2. MODELLING PLANAR PARALLEL TEXTURE

approaches have been developed to analyse texture, includ- - . '

ing statistical, geometrical, model and spectral based meth-_One ofthe Ch‘f"raCt?”St'CS _of_plgn_a g texture, perhaps its defin-

ods. For a full overview, see [1] and [2]. ing characteristic, is that it is infinitely extendable, so that

One research area which has been extremely active ijmages are functions on an infinite (or at least very large)

recent years is the application of wavelets to texture analy-dotmlamD oo TZUS |r(lj.otrq§rtyo modelt;uch textur?s ac;]cg—
sis [3, 4]. By providing a multiresolution view of the im- ratety, Vc\)/nedneet sa r'f ”d.ut'c.)g gverb .e space ot such im-
age, wavelets are the perfect tool for examining texture at@9es. YWe denote such a distribution by-
different scales. An example is the Hidden Markov Tree

: : ) . Pr(I|lu=m, K, 1
technique developed by [5], which describes the interscale (Ip=m, ) @)

dependencies pf a standard wavelet decomposition. OthyhereT is the infinite image;,, is the set of parameters
ers have investigated the use of wavelet packets as a texturgs the model of texturen € M. the set of textures: and

This work was partially supported by EU project MOUMIR (HP-99- M * D — M is the class map, which here takes every
108). pixel to texturem.




For practical applications such as image segmentation,wheref's relates the pixels it to each otherf' ; relates
one needs to be able to analyse and segment images thatixels in R to those inR, Fzp relates pixels inRk to those

contain many different arbitrarily shaped finite textured re-
gions, which means that one needs, not the distribution on

in R, andF'z ;; relates pixels ink to each other.
Partitioning the operataf in this manner and marginal-

infinite images, but that on finite, arbitrarily shaped images. ising over®z, as in equation (4), gives us the following
We thus need to marginalize equation (1) over the values ofprobability measure for the imade on the finite regiork:

the pixels outside the desired region.

Let ® be the space of infinite images afdC D, a
region. There exist two projection®r and P, and two
injections,ir andi z, which generate an orthogonal decom-
position of ®:

P (2)
VN
Pr . Dpr

P S PR(®) ® Pg(P) = Pp @ Op ®)

If we now marginalise R | = m, K,,) over® 5, we will

end up with the probability measure for the image on the

finite regionR:

Prlel-) = [Pzl @

R

Pr(Iz|-) = 71— (Ir|IGrIIR) (8)
whereGgr = Frr — FRR (FRR)il FRR'

Although in principle we can evaluate this operator and
the exponent of equation (8), in practice computational com-
plexity requires that we diagonalizeg.

2.2. Diagonalization of the operatorG

If we can find aseB = {|a) € ®r : a € A} of functions
on the regionk such that:

1. The sef{ig|a) : a € A} of infinite images are eigen-
functions of the operataf’ (with eigenvaluey,);

2. The setB forms an orthonormal basis fdrg;

then we can diagonalize the operatog. The first condi-
tion implies that the support aFiz|a) lies in the region
R. Thus the second term iy is zero, and the first term

which, in principle at least, solves the boundary problem for becomes,|a). Hence:

texture.

2.1. Gaussian Distribution

(a|Grla) = falala) 9)

The second condition then means tligt is diagonalized
by B, allowing us to write our distribution as:

In this paper, as mentioned in section 1, we choose to model

texture using a Gaussian distribution, developing this model

Pr(Ig|-) = Z te™ Laca fallrla)(allr) (10)

as outlined above. In abstract notation, a Gaussian distribu-

tion can be expressed as:

P(|) = |F|1/2e—(I|F\I> (5)
where (I].J) is the inner product of the functiorj$) and
|.7) in the space of images, ahfl| is the determinant of the
operatorF’. In the position basis, this distribution takes the
form:

P(I|) _ ‘F‘l/zeiz(z,m/)EDm I(z)F(z,x")I(z") (6)

whereF (z, 2'), the inverse covariance matrix, captures spa-

tial correlations in the image. It is diagonal in the position

How do we find such a sé8?

2.3. Using Wavelet Packets

One of the characteristics we demand from our distribution
is that of translational invariance. This condition makes
our operatorF’ diagonal in the Fourier basidy(k, k')
f(k)d(k, k"), which means that our distribution is now char-
acterized by a functioif on the Fourier domain:

Pr(I|) = \F\l/Qe‘Zk SR (R)I(K)

11)

For an arbitrary functiorf (k), itis very hard to find a seB
that satisfies the conditions in Section 2.2. We thus want to

basis only if the values of the pixels in the image are inde- choose a set of functionsthat is varied enough to capture

pendent of each other.

the structure present in the texture, but limited enough that

Corresponding to the orthogonal decomposition of the we can satisfy the conditions. To this end, consider the set

space of infinite images by the mapg and P, the opera-
tor F' can be split up as follows:

r_ ( Frr Fgrp )
Frr Frir

@)

T of dyadic partitions of the Fourier domain. We define a
set of functionsF by:

F=U #r
TeT

12)



whereFr = {f : f is piecewise constant 6f}. Given an
element ofT" € 7, and a mother wavelet, we can define
a wavelet packet basiBr. Each element of this basis has
frequency support that lies approximately in one of the ele-
ments of the partitior¥”. The basis elements are thus ap-
proximate eigenfunctions of the operators defined by the
functions inFr. Those basis elements whose support lies
in R thereby satisfy condition 1.

Our next task is to complete the set of wavelets inside
the regionR in order to make a basis for the region and in
doing so satisfy condition 2. How we do this depends on
the shape ofR. We consider two possibilities: dyadic and
arbitrarily shaped regions.

d)

3. PARAMETER ESTIMATION
Fig. 1. a) Texture D101 and b) its optimal decomposition;

For the first case, we can use a decimated wavelet packet) Texture Raffia and d) its optimal decomposition.
decomposition to obtain a basis f&r Given a partitioril’
and a functionf € Fr, the distribution for a dyadic region

R takes on the form: 4. CLASSIFICATION

longer form a basis. There are two problems. First, the
) _ ) basis elements may not be aligned with the boundary and so
whereq is the index for the subbands @t [, is the value  jnclude information from outsid&®. Second, a shifting of

of f on subbandy; 7 is an index for the individual wavelets g with respect to the basis elements will produce a different
within each subbandy,, ; is the(«, i) wavelet coefficient of representation of the same texture.

the image; andV,, is the number of coefficients in subband To ameliorate this situation, we complete the basis in

a. o R using the following approximate scheme. For each sub-
When estimating the parameters of a texture, we canpand, we take the geometric mean, over all translations, of
choose to use dyadic sample images. In our experimentsihe probabilities of the parts of the translated versions of the

«

Ny /2
Pr(Ig|f,T) = H [(Jca) e~ foZica wi,i] (13) For arbitrarily shaped region3, dyadic wavelet packets no
™

for each texture, we uséd patches, each of sizZ86 x256.  supband that lie withi, and then recombine these proba-
To find the optimal parameters for a given texture we exam- ijjities to give a probability for the image iR. The effect s
ine the probability to create an undecimated wavelet decompositioR.oThe

Pr(f, T|d) o Pr(d| f, T)Pr(f|T)Pr(T) (14) distribution takes on the following form:

whered is the training data used for a given texture. Pizglf, T) =] T1 Kfa) 6&(*1“3“*2] 7
We assume R¥f|T") to be uniform, and choose the prior, o zer [N
Pr(T'), to penalize large decompositions: wherel/, is the redundancy factor for subbandthe num-
PHT) = 2~ (8)e—AIT] (15) ber of pixels between wavelets in the subband. Note that this

distribution is not the same as that found by assuming that

where|T| is the number of elements in the partition. The the coefficients in the undecimated wavelet decomposition

probability Ptd| f, T') is given by equation (13). Differenti- ar€ independently distributed.
ating with respect tgf,, gives us the maximum a posteriori Given the probability of a region of each texture, we
(MAP) estimate off for fixed T* assume that the probability of a finite composite image
' with domainD and classmap : D — M, is:
) N,
Jo= g5 (16) Priplp, {Kn}) = [] Prln,
ea Tast meM

:uRm = m; Km) (18)

We use a depth-first search through the spade find the whereR,, C D = p~!(m), the region with class:.. The
exact MAP estimates for botl and f. Figure 1 shows  probability of a class map is then given by:

two examples of texture models that were trained using this
algorithm. Pr(ullp, {Km}) o< Pr(Ip|p, { Km})Pr(u) (19)



With a trivial prior, due to the form of equation (17), we 6. CONCLUSIONS

could perform a pixelwise maximum likelihood classifica-

tion of the image. In practice, we know thatis likely to We have described a new adaptive probabilistic model for
be somewhat regular. We could define a Potts prior and usdexture description and segmentation. Wavelet packet bases,
simulated annealing to make a MAP estimate.ofThis of which arise naturally within our probabilistic framework,
course is very slow, and it turns out that another approachallow the model to adapt to an individual texture and in
produces results that are as good, if not better, while remain-doing so capture its underlying structure. Our model was

ing extremely quick. We use the following classification tested on several Brodatz texture mosaics.
rule: We are currently applying these models, and others de-

veloped within the same framework, to remote sensing ap-
f(z) = arg max II Prip()lu’)=m) (20)  plications such as detection and verification of land usage
2’ €V (x) and retrieval applications where the database contains highly

. . . . i . Results will I .
whereV (z) is the set of neighbours of pixel This rule has textured images. Results will be reported at a later date

a similar effect to the Potts prior, but it still allows a pixel-
wise classification because it uses the data at the neighbours 7. REFERENCES
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