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ABSTRACT 

This work presents a novel approach to object localization 
in complex imagery. In particular, the spatial extents of 
objects characterized by distinct spatial signatures at 
multiple scales are estimated by using statistical models to 
control a simple region growing process. Texture motifs 
are used to model the spatial signatures at the smallest, or 
pixel, scale. Markov random fields are used to model the 
spatial signatures at the larger, or motif, scale. These 
models are used to iteratively expand a bounding box to 
approximate the spatial extent of an object. The approach 
is applied to localizing geo-spatial objects in high-
resolution panchromatic aerial imagery. 

 
1. INTRODUCTION 

The human visual system is highly adept at localizing 
objects characterized by distinct spatial signatures. For 
example, even a casual observer can determine the spatial 
extents of golf courses and housing tracts in panchromatic 
aerial imagery. While progress has been made in 
developing effective spatial descriptors, such as the texture 
features recently standardized by MPEG-7 [1], 
automatically estimating spatial extents remains a 
challenge for many classes of objects. 

Many applications not only require that the presence 
of an object be detected but also that its spatial extent be 
localized. For example, knowing the spatial extents of geo-
spatial objects in geographic datasets is necessary for 
supporting spatial queries. The Alexandria Digital Library 
(ADL) [2] contains an extensive gazetteer that catalogues 
the spatial locations of over 5 million instances of over 
200 types of geo-spatial objects. However, each instance is 
represented by only a single point location so that 
extending the gazetteer to include even bounding boxes 
has been identified by the ADL development team as 
essential for supporting a broader range of spatial queries 
[3]. The proposed technique automates this using readily 
available aerial imagery. 

Texture features based on the outputs of scale- and 
orientation-selective Gabor filters [4,5] have been shown 
to effectively characterize a variety of basic land-cover 
types in high-resolution aerial imagery, such as forests, 
grasslands, agricultural fields, and urban development [6]. 

Gaussian mixture models (GMMs) can be used to 
represent the distribution of texture features for objects 
that consist of multiple spatial signatures [7]. The 
components of the GMMs correspond to the textures 
common to the object classes. These textures are termed 
texture motifs and examples include the rows of moored 
boats and water in harbors, and the grass and trees in golf 
courses. 

While the texture motifs capture the spatial 
distribution of the pixel intensities, it is often the spatial 
distribution of the motifs themselves that is the 
distinguishing characteristic for an object class. For 
example, it is the spatial distribution of grass and trees that 
distinguishes golf courses from parks. Spatial signatures 
need to be modeled at both the pixel and motif scale. 

The main contribution of this paper is a technique that 
uses the configuration of the texture motifs to localize 
objects characterized by spatial signatures at multiple 
scales. The spatial distribution of the texture motifs is 
modeled as a Markov random field (MRF). This model is 
used to optimally grow a bounding box that represents an 
approximation of the spatial extent. The proposed method 
is applied to localizing geo-spatial objects in high-
resolution panchromatic aerial imagery. 

The rest of the paper is organized as follows. Section 
2 describes the salient components of the proposed 
method, Section 3 presents experimental results, and 
Section 4 concludes with a discussion. 

2. THE PROPOSED METHOD 
The proposed method consists of three steps. The first step 
uses texture motifs to represent the textures common to an 
object class. The second step models the spatial 
distribution of the motifs as an MRF. And, the third step 
uses the MRF to optimally expand a bounding box to 
estimate the spatial extent of an object instance. 

2.1. Texture Motifs 
Gaussian mixture models have been shown to effectively 
characterize the texture motifs, or common textures, of a 
variety of object classes that are characterized by multiple 
spatial signatures [7]. The Gabor texture features 
corresponding to a motif are assumed to be Gaussian 
distributed in the high-dimensional feature space and the 
GMM parameters—the prior probabilities and the class 



 

 

conditioned means and covariances—are estimated using 
the Expectation-Maximization algorithm applied to a set 
of training images. The GMM model is used to label the 
texture motifs of a novel object instance using a maximum 
a posteriori classifier. Figure 1 displays an example of a 
golf course and its corresponding motif labeleling. More 
details concerning texture motifs can be found in [7]. 

2.2. Markov Random Fields 
The result of the previous step is an image in which each 
pixel, or site, is labeled as one of the M motifs. The spatial 
arrangement of the motifs is often the distinguishing 
characteristic for an object class. If the simplifying 
assumptions are made that only neighboring sites have 
direct interactions with each other—i.e., Markovianity—
and that these interactions do not vary with the locations of 
the sites—i.e., homogeneity—then a tractable way to 
represent such a spatial distribution is to model the motif 
labels as a homogeneous MRF. The Markov-Gibbs 
equivalence properties can then be used to compute the 
joint probability of a region by evaluating the energy 
function at all sites. 

Figure 2 shows the first order neighborhood defined 
for a site i. This neighborhood contains one single-site 
clique and four pair-site cliques that are taken to be 
equivalent since the MRF is also assumed to be isotropic. 
Since each site is labeled as one of M motifs, a multi-level 
logistic model (MLL) is adopted. If site i has label fi then 
the potential functions for the single-site and pair-wise 
cliques are 

( ) { }1 if 1, ,i j iV f f j Mα= = ∈ …  (1) 
and  

( )2

                 if  
,

0                  otherwise
i i

i i

f f
V f f

β ′
′

=
=




 (2) 

where ii N′∈ , the 4-neighborhood of site i. The joint 
probability of f, a labeling of a set of sites S, is then 
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where F represents all possible labelings of S. 

The MLL parameters jα , j=1,…,M, and β, can 
estimated from a training set using a Markov Chain Monte 
Carlo (MCMC) approach [8]. 

2.3. Object Localization 
The result of the previous step is an MRF model for an 
object class. The model is completely specified by the 
MLL parameters jα , j=1,…,M, and β. This model is used 
to estimate the spatial extent of a novel object instance 
with the assumption that an interior point is known. 

The guiding premise is to expand a bounding box in 
the direction that is most similar to the object class with 
respect to the MRF model. The likelihood function in (3) 
cannot be used to calculate this similarity since the 
partition function cannot be computed except in simple 
cases. An alternate approach is needed. The proposed 
technique determines how similar a direction is to the 
object class by estimating the MLL parameters for the 
adjacent region for that direction and then comparing these 
estimates with the class model parameters. 

Let the current bounding box consist of sites S and let 
the region adjacent to side k be kS∆  where 
k∈K={1,2,3,4}, as shown in Figure 3. (The labeling K is 
arbitrary.) The parameters for region kS∆ , k

jα , j=1,…,M, 

and kβ , are estimated, again using an MCMC approach. 

Let kD  be the L1 distance between the parameters for 
side k and the model parameters: 
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The bounding box is then extended by the row or column 
of sites adjacent to the side corresponding to the minimum 

kD . That is, the sites 
*k

edgeS∆  are added where 
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Any point inside the object can be used to initialize the 
algorithm. The ADL Gazetteer provides such a point. 

The procedure for iteratively expanding the bounding 
box is summarized as follows: 

1. Initialize the bounding box as a point. 
2. Estimate the MLL parameters for regions kS∆  

where k=1,2,3,4. 

3. Expand the box by adding the sites k
edgeS∆  

corresponding to the region whose parameters 
minimize kD . 

4. If the stopping criterion is met then finish. 
Otherwise, go to step 2. 

 
 
 
 



 

 

A logical choice for the stopping criterion is when 
none of the adjacent regions are sufficiently similar to the 
object class; i.e., when kD  for all sides is greater than a 
predetermined threshold. 

3. EXPERIMENTS AND RESULTS 
The proposed technique is applied to two classes of 
objects, golf courses and mobile home parks. Modeling 
the spatial arrangement of the texture motifs for these 
classes using MRFs is appropriate since the arrangements 
are distinguishing characteristics. The dataset for each 
class consists of five aerial images in which the object 
boundaries have been manually estimated and represented 
as image masks. 

The proposed technique is evaluated using a leave-one-
out approach in which four images are used for training 
and the remaining image for testing. The GMM for the 
texture motifs is trained using the masked regions in the 
four training images as described in Section 2.1. This 
model is used to assign motif labels to all five images. An 
example of this labeling is shown in Figure 1(b). The 
parameters for the MRF model are estimated using the 
masked regions in the four motif-labeled training images 
as described in Section 2.2. This model is used to 
iteratively expand a bounding box in the motif-labeled test 
image as described in Section 2.3. The bounding box is 
initiated as a random point inside the object as this 
simulates the information available in the ADL Gazetteer. 

Figures 4(a) and 4(b) show the growth of bounding 
boxes for a mobile home park and a golf course, 
respectively. The image regions outside the object masks 
are dimmed to indicate the manually specified spatial 
footprints that serve as the ground truth. The bounding 
boxes are shown at 75-iteration intervals from random 
starting points until the stopping criterion is met. In this 
case this criterion is when kD  is larger than an 
empirically chosen threshold for k=1,2,3,4; i.e. when the 
distance between the estimated MLL parameters and the 
object parameters exceeds the threshold in all four 
directions. These examples demonstrate that the proposed 
technique effectively estimates the spatial extent of the 
objects even when the starting points are near the 
boundaries. 

Receiver operating characteristic (ROC) curves can be 
used to evaluate the expansion of the bounding box. Since 
the object boundary is known for the test image, the true-
positive ratio can be computed as the percentage of the 
object that is contained in the bounding box and the false-
positive ratio as the percentage of the bounding box that is 
not part of the object. Figures 5(a) and (b) show the ROC 
curves averaged over the five mobile home park images 
and five golf course images, respectively. The proposed 
technique is shown to maintain a high true-positive to 
false-positive ratio and outperforms a naïve approach that 

begins at the same random location but does not consider 
the MRF model and uniformly expands the sides of the 
bounding box. 

4. CONCLUSION 
This work describes a technique for estimating the spatial 
extents of objects characterized by spatial signatures at 
multiple scales by optimally expanding a bounding box 
with respect to a model that uses texture motifs to 
represent the spatial configuration of the pixel intensities 
and MRFs to represent the spatial configuration of the 
motifs. Examples are provided for localizing golf courses 
and mobile home parks in panchromatic aerial imagery. 

A future research direction is improving the stopping 
criterion to make the region growing procedure more 
robust. Another direction is to model the MLL parameters 
for an object class as a GMM rather than a single set of 
values to account for the lack of homogeneity. This would 
result in a more stable region growing procedure. 

Acknowledgements 

This work is supported by the following grants: NASA 
California Space Grant, USDOT Research and Special 
Programs Administration Contract DTRS-00-T-0002, 
ONR# N00014-01-1-0391, NSF Instrumentation #EIA-
9986057, NSF Infrastructure #EIA-0080134, and NSF 
#IIS-9817432. 

5. REFERENCES 
[1] B.S. Manjunath, P. Salembier, and T. Sikora, Eds., 

Introduction to MPEG7: Multimedia Content Description 
Interface, John Wiley & Sons, first edition, 2002. 

[2] Alexandra Digital Library Project homepage: 
http://www.alexandria.ucsb.edu. 

[3] L.L. Hill, J. Frew, and Q. Zheng, “Geographic names: The 
implementation of a gazetteer in a georeferenced digital 
library,” D-Lib, January 1999. 

[4] B.S. Manjunath and W.Y. Ma, “Texture features for 
browsing and retrieval of image data,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol.18, no.8, 
pp.837-42, August 1996. 

[5] P. Wu, B.S. Manjunath, S. Newsam, and H.D. Shin, “A 
texture descriptor for browsing and similarity retrieval,” 
Journal of Signal Processing: Image Communication, 
Volume 16, Issue 1-2, page 33-43, September 2000. 

[6] B.S. Manjunath and W.Y. Ma, “Browsing large satellite 
and aerial photographs,” IEEE International Conference on 
Image Processing, Lausanne, Switzerland, Sep 1996. 

[7] S. Bhagavathy, S. Newsam, and B.S. Manjunath, 
“Modeling object classes in aerial images using texture 
motifs,” International Conference on Pattern Recognition, 
Quebec, Canada, August 2002. 

[8] L. Wang, J. Liu and S.Z. Li, “MRF Parameter Estimation 
by MCMC Method,” Pattern Recognition, Vol. 33, No. 11, 
pp. 1919-1925, 2000. 



 

 

 
 
 
 
 
 
 
 

(a)                  (b) 
Figure 1. (a) An example of a golf course in an aerial image. (b) The texture motif labeling for this golf course. 

 
  
 
 
 
 
 

Figure 2. First order neighborhood for site i. 
 
 
 
 
 

 
 
 
 
 
 

Figure 3. The bounding box S  is expanded by adding the 

row of sites k
edgeS∆  to the side k for which the adjacent 

region kS∆  best matches the MRF model for the object. 

 

 
 
 
 
 
 
 
 

(a)                 (b) 
Figure 4. Bounding box every 75 iterations until stopping for (a) mobile home park, and (b) golf course. 

 
 
 
 
 
 
 
 
 
 

(a)                  (b) 
Figure 5. ROC curves for (a) mobile home parks, and (b) golf courses. 

i 
i1 

i2 i3 

i4 

k
edgeS∆  S

kS∆

start 75 
150 
225 
300 
375 
384 start

300
225

375

150

450

75

531


	INTRODUCTION
	THE PROPOSED METHOD
	Texture Motifs
	Markov Random Fields
	Object Localization

	EXPERIMENTS AND RESULTS
	CONCLUSION
	REFERENCES

