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ABSTRACT 
We introduce a new statistical distribution for modeling non- 
Rayleigh amplitude statistics. We call the new model the 
Rician Inverse Gaussian (RiIG) distribution. The theoret- 
ical basis of the model is briefly presented, and we give 
an EM-type algorithm for estimating its parameters from 
data. Finally, we include some modeling examples, where 
we have tested the ability to fit to histograms of linear and 
log-compressed medica1,ultrasound data. 

1. INTRODUCTION 

Modeling non-Raileigh amplitude statistics in coherent imag- 
ing systems has heen a research area for almost three decades, 
and several interesting distributions have beenproposed. The 
most common ofthese are the Rice-distribution, the K-distri- 
hution and the homodined K-distribution. Accurate statis- 
tical models for the amplitude statistics are important both 
with respect to characterizationlclassification of image re- 
gions [I], and with respect to speckle filtering [2]. 

In this paper we introduce a new model for modeling the 
amplitude statistics of coherent imagely, which is a com- 
pound distribution of a the Rician distribution and the In- 
verse Gaussian (IG) [3]. We have for this reason denoted 
this new distribution the Rician Inverse Gaussian (RiIG) dis- 
tribution. Wc give some details of the properties of this new 
model, describe how its parameters can he estimated, and 
test its ability to fit to histograms of segments of ultrasound 
images. 

. 

2. REVIEW OF SPECKLE MODELS 

I f  the scattering medium is modeled as a collection of dis- 
crete scatterers, we may write the detected signal as 

N 

i= I 
s = x + j y = ~ e - J @ =  Cai&, ( 1 )  

where N is the number of scatterers, ai is the amplitude and 
$i is the phase of the ith scatterer. 
i: Now, ifthe scatterers’ phases are random and independent 

of the amplitudes, and if the number N is very large, the 
probability density function (pdf) of A ,  the amplitude of s, 
will be a Rayleigh distribution 

where 0 is the the standard deviation of the Gaussian dis- 
tributed I- and Q-components of s. This distribution repre- 
sents the fully-developed speckle case, or the diffuse scat- 
tering signal. 
ii: If a specular component A ,  is added to ( I ) ,  the pdf of the 
amplitude gets Rician, i.e. 

(3) 

where IO is the modified Bessel function of first kind and 
zero order. 
jii: The well-known K-distribution results, if we allow the 
variance of the Rayleigh-distribution to itself being a ran- 
dom variable, distributed according to a r-distribution. In 
this case, the amplitude of s is a compound variable of a 
Rayleigh variable and a r-distributed variable. The pdf is 
explicitly given as 

where &(.) is the modified Bessel function of second kind 
and order v, h = 2 J m  is a scale parameter. v is a 
shape parameter. 
iv: The homodyned K-distribution results when a coherent 
component, A,, is added to the diffuse scattering signal in 
( I ) ,  and we allow the number of terms in the summation, 
N, to itself being random following a negative binomial dis- 
tribution. The resulting pdf, which can not he obtained in 
closed form, is given by the integral 

The models reviewed above have some shortcomings: the 
Rayleigh model certainly is an appropriate model for fully- 
devcloped speckle, hut this case does not often occur in 
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high-resolution imagery. Also, the K-model has its limi- 
tations, beCdUSC, often the signal has a specular component, 
resulting in bad fits to the data. The homodyned model has 
good modeling capabilities, but its use is restricted by the 
lack of a tractable pdf. 

3. NEWMODEL 

We will in the following introduce a unifying model for 
non-Rayleigh amplitude data, which is able to overcome the 
problems mentioned above. In addition, its parameters can 
easily be estimated from data. 

When the I -  and Q-components of the detected complex 
signal deviate from Gaussian statistics, the amplitude will 
be non-Rayleigh. We propose to use the Normal Inverse 
Gaussian (NIG) distribution to model these components. A 
NIG-distribution is defined as a variance-mean mixture of 
a normal distribution with the inverse Gaussian (IG) as a 
mixing distribution [4]. The probability density function is 
explicitly given as 

where 

p ( x )  =6Jaz-pz+p(r-fl), 

q(r) = 6 
and K I  (.) is the modified Bessel function of the second kind 
and order I .  As noted, the distribution is characterized by 
the fourparameters (a,P,p,G), whichare boundedsuch that 
0 _< IpI _< a,&, and -m <# < m. a controls the steepness 
of the distribution; a small a means a steep distribution, a 
larger a means a less steep distribution. p determines the 
skewness; p < 0 implies skewed to the left, p > 0 implies 
skewed to the right, and p = 0 implies a symmetric distribu- 
tion. 9 is a location parameter, and 6 is a dispersionparam- 
eter similar lo the variance in the Gaussian distribution. 

Let X be defined by the relation 

x = p  + pz+ \/zN (7) 

where N - N(0, 1). Hence, the conditional distributionXlZ 
is normal + pz,z). The marginal distribution of Z is 
Inverse Gaussian (IC) with parameters 6 and y= e. 
This probability density is given by 

The IG-distribution was first introduced as the 6 rst passage 
time disfrihufion of Brownian motion with drift. It has re- 
cently attained increasing interest in signal processing and 

statistics (financial) due to its ability to model highly skewed 
densities, and its many analogies with the Gaussian distri- 
bution. Its meanandvariance areE{Z} = f and V{Z} = F, 
rcspectively. 

Consider the case when the X- and Y-components of s 
in (1) are nncorrelated and 2-dimensional NIG-distributed, 
i.e: X - NIG(0,a,Px,6), and Y - NIG(O,a,P,.,6). Note 
that we assume that both,& andpy are zero. Accordingly, 
X and Y are both compound random variables of the form: 
X= p,Z+&Nx and Y = p,"Z+ ax . ,  whereN = (N&) - 
W(O,Z), w i t h Z = i ( i i s  the 2-dimensionalidentitymatrix.), 
a n d Z I V I G ( G , y ) , w i t h Y = J ~ .  Itisnoweasy 
to show that the distribution of the envelope, conditioned on 
Z,  i.e. AIZ, is Rician distributed, with pdf given by 

a I 
p,&lz) = :exp(--(a2 22 + p2Z))lo(pa), (9) 

where p = -. From (9) we observe that the skew- 
ness parameters of the NIG-distributions will have the effect 
of a coherent component on the amplitude statistics. Now, 
the amplitude will accordingly he a compoundvariable con- 
sisting ofthe Rice-distribution in (9) and the IGi6,y) distri- 
bution, i.e. 

m 

 PA(^ = P,-lz(aldpz(z)dz. (10) 

The integral in (10) can be evaluated to give the following 
closed form pdf for A :  

p.4(a) = & 3 / 2 6 a p ( ~ )  

We call thls distribution the Rician Inverse Gaussian (RiIG) 
distribution. As can be seen, the pdf has three parameter. 
Fig.1 displays some realizations of the pdf for some selected 
values of the parameters. The numbers in brackets in the 
upper right corner of Fig. 1 give the values of a, p, and 6 for 
each curve. We observe that by varying the parameters a, 
p, and 6, we may model a wide range of distributions, from 
a Rayleigh-shaped pdf to a Gaussian-shaped pdf. 

4. PARAMETER ESTlMATION 

The parameters of the RiIG distribution can be estimated 
using an EM-type algorithm. In the previous section we as- 
sumed that the speckled free image, represented by the vari- 
able 2, follows an IG(z;6.y) distribution with parameters 6 
and y. This distribution is well documented in the literature 
[3]. Its kth-order moments are given by 
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Fig. 1. Examples of pdfs residing to the RiIG model. The 
numbers in the brackets correspond to a, p, 6, respectively 

From (12) we easily find that E { Z }  andE { $} are: 

6 E { Z }  = - 
Y' 

It is further noted that the posterior distribution Z ( A  is 
given as: 

x e x p ( - ~ ( ~ + a 2 z ) ) .  (15) 

This is the pdf of a generalized inverse Gaussian (GIG) 
variable specified by the parameters (-i, -,a) [41. 
The moments of a GIG(z;X,&y) distribution are given by 
141 

Let I' = w. We thus have that 

(17) 
v va 
al+va 

E { Z I A }  = -__ ,and 

Now, given N independent observations ai, i = I ,  2, '. . , N.  
From some initial values for a, p, and 6, we may estimate 
E { Z }  as 

a n d E ( 6 ) a s  

Using (13) and (14), our estimators for 6 and y are 

" b  y =  __ 
< Z > '  

respectively. The p parameter is estimated using the maxi- 
mum likelihood method. Using previous estimates of a, p, 
S,  andy, defineF(p;a) as 

N 
F ( P ; Q )  = lognpA(ai) :  (23) 

i= I 

where p ~ ( u i )  is defined in ( I  I). Our estimate for p is ac- 
cordingly given as 

6 = argmaxF(p;a). (24) 
6 

This maximization must be performed numerically. 

5. MODELING ULTRASOUND DATA 

Fig.2 shows a log-compressed medical ultrasound image of 
the human heart. We have tested the modeling capability of 
the RiIG-model on both the linear image (un-compressed), 
and the log-compressedversion. No pre-processing has been 
done. In the lefl panels of Figs.3-5 the histograms of the an- 
plitudes of the marked regions in Fig.2 have been displayed, 
along with the best fitted RilG- and K-models. The parame- 
ters of the K-models were estimated using a moment based 
estimator, or by matching the moments of the data. In the 
right panels we have included variance stabilized pp-plots 
of the corresponding models. For the log-compressed data 
the K pdf is not an appropriate model, and hence compar- 
isons with this model have been skipped. We note that for 
the linear data the RiIG-model seems to fit the histograms 
of the data much better than the K-model. In Fig. 3 and Fig. 
5 we see that the K-model is not able to follow the shape of 
the histograms, whereas the RiIG model does. The RiIG- 
model also provides excellent fits to the histograms of the 
log-compressed data. 

6. CONCLUSION 

We have presented a new statistical distribution for model- 
ing amplitude data which do not follow a Rayleigh distri- 
bution. We call this distribution a Rician Inverse Gaussian 
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Fig. 2. Ultrasound image (log-compressed). The marked 
areas dcfine the image regions which the RilG-model was 
tested on. 

Fig. 3. Linear data Fitted RiIG-model (*), histogram 
(dashed) and fitted K-model (solid) corresponding to the 
four image regions in Fip.2. 

distribution. The preliminaly tests show that this model has 
a large degree of flexibility, and may he applied in situations 
where cxisting models, like the K-distribution, fails. 
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