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ABSTRACT 

This paper presents a segmentation scheme for images containing 
both smwth regions and textures. It is based on a vector-valued 
anisotropic diffusion on a combined colorlGabor feature space, 
followed by a hierarchical segmentation using dynamics of mnl- 
tiscale 'generalized gradient' Watersheds. The proposed method 
gives g w d  segmentation results and is shown to be more effective 
than its counterpart, which uses only multiscale color information. 
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1. INTRODUCTION 

Texture segmentation is a long-tenned research field in computer 
vision [I]. It has been studied using various approaches. Since the 
early days of computer visioQ the feature classification approach 
has became the essential texture analysis techniqne for the treat- 
ment oftextured surfaces [I]. Recently. methods combining region 
and boundary infonnation have been suggested [2]. These meth- 
ods generate a texture feature space by filtering the image using 
Gabor filters. Texture information is then expressed (e.g. statis- 
tical measurements) and segmentation is achieved using geodesic 
contours. These appIOaCheS have heen extended by using the Bel- 
tmmi Bow (31 for denoising the Gabor features, whch is used as 
an inverse edge detector in the geodesic snakes mechanism [4]. 
In this paper. an early presented anisotropic diffusion scheme for 
color images [SI is applied to vector-valued images that describe 
both color and texture features, obtained using Gabor filtering. In 
the case of grey level images. a sindar approach was proposed 
by Rubner and Tomasi in [ 6 ] .  After the generation of the mul- 
tiscale tower, a region-based segmentation is performed using a 
multiscale hierarchical scheme IS] 171. which allows the creation 
of a h i e m h y  among generalized gradient watersheds. The no- 
tion of a generalized gradient for colorhexture contrast originates 
hni diNerential geonietiy and is often used to estimate gradient 
of multi-specbal imagos [SI. 
The hierarchical segmentation scheme consists of three basic mod- 
ules. The fnst module retrieves the texture feature images and 
combines them with the color information. The second module 
is dedicated to attribute a saliency measure to each contour arc at 
the localization scale (the h e s t  scale in the scale-space stack), tak- 
ing into account the whole multiscale tower. The entire process to 

retrieve the saliency measure for the gradient watersheds requires 
three steps: (i) scale-space stack generation by vector-valued non- 
h e a r  diffusion filtering. (ii) Linlung: At each scale the general- 
ized gradient is estimated using the gradient-tensor method [XI. At 
the localization scale, the watershed tmnsfonnation is performed 
to identify the position of all the contours in the iniage. At the 
higher scales, the duality between the regional minima of the gra- 
dient and the catchment basins of the watershed is exploited to 
make a robust region based parent-child Ih&ing scheme. (ui) COH- 
tow valuation bj  downwardpmjection. A combination of the dy- 
namics ofcontours [9] over the scale-space stack - the dynamics of 
contours in scale-space - is used to valuate the contours detected at 
the localization scale. Finally, the last module ofour method iden- 
tifies the different hierarchical levels through a hypothesis testing 
criterion. 

The paper is organized as follows. An overview of our hierarchi- 
cal segmentation scheme is presented in Section 2. In particular, 
Section 2.1 deals with the Gabor tr'msform and the generation of 
the colorltexture feature space, while Sections 2.2 and 2.3 present 
the saliency measure and hierarchical level retrieval modules, re- 
spectively. Finally in Section 3 we illustrate segmncntatian results 
on a set of artificial and natural scene images and quote some con- 
clusions. 

2. HIERARCHICAL MULTISCALE SEGMENTATION 

A large class of hierarchical schemes based on superficial or deep 
image strncture have been adapted to deal with the segmentation 
problem. Among them wecansite [lOl[ll][l2][13][14]. 
Our main goal is to create a hierarchy among the generalized gadi- 
ent watersheds that preserves the topology ofthe watershed lines at 
the localization scale and extracts objects of a larger scale. Let us 
firstdefinewhatwemeru,byahierarchy. LetPO = (S1,Sz ,..., S,,} 
be the initial partitioning of the image at the localization scale af- 
ter the application of the gradient watershed transformation. A 
hierarchical level k ( H L k )  is defined as the partitioning Fk .= 
{Sf, S:, ...., Si,} whichpreservostheiiiclusionrelationship P' 2 
Pk-', implying that each segment of the set P' is adisjoint union 
of segments from the set Pk-'. A hierarchy of partitions is de- 
k e d  as a family which consists ofall the hierarchical levels H L t .  
where k E [0, K].  It corresponds to a hierarchy of Regionadja- 
cency Graphs, Ok(Pk, A')), that are generated by applying suc- 
cessive mergings. 

U.S. Government work not protected by U S .  copyright. I - 969 



2.1. ColoriTexture Feature Space 

Spectral decomposition is a common way to describe texture in 
image processing. The textme content is usually represented as a 
vector-valued image, in which each decomposition band describes 
the energy at a given frequency and orientation. The spectral de- 
composition using Gabor filtering has often been justified by the 
fact that it provides a good approximation of the natural processes 
in the primary visual cortex. 
A Gabor fuiction is a harmonic wave modulated by a Gaussian. 
In [6], the log-Gabor filters are used since natural textures often 
exhibit a linearly decreasing log power spectrum. In the frequency 
domain, the log-Gabor filter bank according to the implementation 
of Bigun et al. [IS. 61 is delined as: 

where (r. y )  are polar coordmates, w+ is the logarithm of the cen- 
ter frequency at scale i ,  w o is the jth orientation and C(w,: w+,) 
is defined as: 

v< 

where U:, mid r$, are the parameters of the Gaussian, i E 11, MI 
and j E 11, N] for A t  orientatioiis and N scales. The N orien- 
tations are taken equidistant (Eq.3) and the scales are obtained by 
dividing the frequency range w ~ , ~ ~  -wmin into M octaves (Eq.4). 

U+,< - 2 
w;< = 20,. ( j  - 1) 

2N (3) 

where 0 = -m-*-u -which yields M octaves 20,4a.. . . , ZMo. 

The texture feahre images are the magniNdes of the responses of 
the Gabor filters. The latter encodes the energy content .and is in- 
dependent ofthe position within the texture. Each vector is funher 
normalized to be a unit vector to emphasize the texture structure 
infomation and reduces the dependance of the responses on light- 
ing. This procedure yields a MN hypersphere [ 6 ] .  
For color images spectral decomposition using Gabor filtering is 
mostly achieved by processing each color band separately. In [I 61, 
Gabor opponent features are used to describe texture. The Gabor 
responses of each color channel interact. according to the oppo- 
nent process theory, with the responses of another color channel. 
In 1171. the color image is transformed to a complex-scalar image 
that is based upon the HSY colorspace. It is on the complex scalar 
image that the Gabor filter is applied. 
In this paper. the texhre features far color images are obtained 
by filtering each color band separately with the Gabor filter bank 
for scalar images described above [6]. The lattcr yields 3 f M N  
hypersphere forthe texture featuresanda 3+3NM-cliamel image 
for the combined color and textlve information. We use N = 4 
and M = 4 and limit the maximum frequency by the Nyquist 
frequency for all experiments. 

2.2. Salient Measure Module 

2.2.1. Scale-Space Generation 

Anisotropic diffusion for image enhancement and demising has 
beenextensi~,elystudiedbyanumberofauthorsinrecentyears [18] 
[19][20]. The idea is to smooth the image in a direction parallel to 
object boundaries and prevent diffusion across edges. Tmdition- 
ally. "edges" are localized in those regions where the gradient of 
the image luminance is high. However. a measure based solely in 
luniiniice or color contrast does not always produce satisfactoy 
results. Looking at other image attributes such as texture provides 
additional information that can help in localizing image discon- 
tinuity. The measure of image features (color, texture, ...) at a 
single location leads to a multi-valued representation ofthe image. 
Several vector diffusion PDE's have been proposed in the litera- 
ture [21]. 
In this work, the multiscale tower ofthe colorltexture feature space 
is generated using an anisotropic diffusion for vector-valued im- 
ages [7]. It is based upon tho regularized Perona and Malik an- 
isotropic chffuion scheme [IS] and it uses a system of coupled 
diffusion equations. The dilfusion tensor is a function of the gra- 
dient of the colorltexture feahlre space (generalized gradient). The 
latter is estimated using the gradent tensor method [SI. Further- 
more the method adopts the Additive Operator Splitting numen- 
cal scheme(A0S) [22], which is computational more efficient than 
most other schemes. 

2.2.2. Linking Scheme 

The linking scheme aims to track the regional minima in the p- 
dient through the scale-space. 'The linking process is applied using 
the approach proposed in [IO]. The linking ofthe minima for suc- 
cessive scales is applied by using the proximity criterion [23]. Th~s  
criterion is limited for projected minima of scale quantization level 
si inside the same geodesic influence zone iz;+' (E',) of a con- 
nected component B, o f B  in A at scale quantization level s~+,: 

ZZF'(Bq) = { P E  A , V j  E I1,Icl/{qJ,d~(P,Bq) < d A ( P , B j ) )  
( 5 )  

Any regional in inhum of the set (m'j}, that is spatially projected 
on the geodesic influence zone iz:'' (Bp) at scale quantization 
level si+l, will be linked with the regional minimum mi'+'. The 
projected minimum of the set {ma.] E iz:+'(Bq). which is the 
closest to the minimum m;'+l, is considered as the father. The 
rest ofthe projected minima onto the same influence zone are con- 
sidered amiihilated. Closeness is defined with respect to the topo- 
graphic distance which is a natural distance measure following the 
steepest grament path inside the catchment basin. At the end of 
the linking step, for each couple of neighboring segments (S;, Sj) 
that share a common border at the localization scale, a linkage list 
A(.&, sj) is constructed. 

2.2.3. Contosr Valuoliotr by Down-projection 

The next step is IO valuate the gradient watersheds at the localiza- 
tion scale so. Foreachsegmentcouple (S~'s"si)" ' ,  S:'S*'S3"), 
appearing at the branch m (scale quantization level s,) of the link- 
age list A(&, s,), we compute the dynamics ofcontours 
DCT(sj,s,) [9]. It expresses how much contrasted the adjacent 
regons (S;, Sj) are at the scale quantization level S- .  The dynam- 
ics ofcontours at each scale are nonnalized according to the maxi- 
mum dynamic at that scale and fially the dynamics of contours h 
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scale-space (DCS) for the adjacent region couple (S,, Sj)  is do- 
fined as the sum for all normalized valuations during the evolution 
in scale-space: 

where N denotes the branch of llie linkage list A(&, Sj) where 
the contour formed by the region couple (S i ,  S,) is annihilated. 
Each arc (I = (Si, S j )  E A’, ofthe RAF &(Po,  A’), is ranked 
according to the& saliency measure DCS(S; ,  Sj) .  

2.3. Hierarchical level retrieyal 

This module identifies the hierarchical levels. Starting from the 
watershed segmentationat the localization scale, a successive merg- 
ing operation is performed until a stopping criterion is satisfied. 
The merging of adjacent segments is based upon a color similarity 
measure. while the merging sequence (order) is given hy the valu- 
ation (dynamics of contours Ui scale-space) ofthe contours [24]. 

3. RESULTS AND DISCUSSION 

In this paper, we introduce texture to the multiscale h i e m h i -  
cal Segmentation method proposed in 15, 71. The salient mea- 
sure (Section.2.2) thatcreatesthemnltiscale hierarchy, is now based 
upon color. as well as texture. On the other hand, the extraction of 
the different hierarchical levels uses solely color information. 
In Fig.1, the evolution of both the color gradient and the gener- 
alized gradient in the scale-space tower for the image shown in 
Fig.2.ab. is illustrated. Diffusing the color feature space, enhances 
the contrast beween the texlons. while the diffusion the wlor- 
texture Seature space smooths the textured areas so that the relative 
contrast of the real scgmcnts hcrmses. In Fig.2. wc compare the 

Fig. 1. Top. Color gradient in scale-space. Bottom. Generalized 
gxdient in scale-space. The scale increases form left to right. Blue 
values colrespond 10 low contrast and the red values denote areas 
of high contrast. 

hierarchical levels that are retrieved &om the hierarchy build using 
only color information (Fig.23 and Fig.2~) and the one generated 
using both color and texture (Fig.2b and Fig.2d). We demonstrate 
that for an image that is created using textures from the Vision 
Texture database ’ (Fig.Zab), the color based salient measure can 

’ h l l p : l l w w w - w Y l e . m e d i a . m i t . ~ d ~ l ~ i ~ m ~ i m ~ ~ ~ ~ N i ~ i ~ ~ T ~ ~ l ~ ~ ~ ~ l  
vis1ea.html 

not create a hierarchy that enables the separation of the different 
texture panems, where as the color-texture based salient measure 
creates a meaningful hierarchy that allows the extraction of a hi- 
erarchical level that separates the four different textures. For nat- 
ural scene images, both salient measures yield meaningful Iuerar- 
clnes. In the case of the color based salient measure, small hut 
color-contmsting segments persist at the coarser hierarchical lev- 
els, (Fig.2~). The color-texture based salient measure can identify 
these segments as part of textured segments and insures that this 
type of segment is only preserved in the liner hierarchical levels 
(Fig.2d). 
The hierarchical level retrieval module simply identifies the dif- 
ferent levels of abstraction in the created lierarchy I n  order to 
select a final segmentation result, one needs to select the level of 
abstraction that is appropriate for further processing 171. In Fig.3, 
we show the optimal hierarchcal level for the hierarchy that is 
created by the color-texture based salient measure, according to 
a segmentation quality measure that relies upon (i) intra-segment 
uniformity> (ii) inter-segment contrast, and (iii) smoothness of the 
boundaries between segments [25, 241. Fig.3a and Fig .3~  are test 
images used by Petrou et al. in [26]. Both segmented images 
render the correct amount of segments. However, there are some 
deviations with the ideal segment border. In the case of Fig.3e, 
the segmentation renders 42 segments, which is somewhat over- 
segmented. Finally. Fig.3b, Fig.3d and Fig.3f are natural scene 
images that contain textured animals. For all three images, rela- 
tively good segmentations are obtained. However. there is a clear 
undersegmentation present. The latter can be solved by selecting 
a finer hierarchical level kom the hierarchical stack. In the case 
of natural scene and color-textured images, we can conclude ha1 
the incorporation of texture features in our multiscale segmenta- 
lion scheme leads to better results than the ones obtained using 
only color information. 
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