HIERARCHICAL SEGMENTATION VIA A DIFFUSION SCHEME IN COLOR/TEXTURE
FEATURE SPACE

I Vanhamel, A. Katartzis, H. Sahli

ETRO/IRIS, Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
(iuvanham,akatarzi,hsahli){@etro.vub.ac.be

ABSTRACT

This paper presents a segmentation scheme for images containing
both smooth regions and textures. It is based on a vector-valued
anisotropic diffusion on a combined color/Gabor feature space,
followed by a hierarchical segmentation using dynamics of mul-
tiscale "generalized gradient® watersheds. The proposed method
gives good segmentation results and is shown to be more effective
than its counterpart, which uses only multiscale color information.
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1. INFRODUCTION

Texture segmentation is a long-termed research field in computer
vision [1]. It has been studied using various approaches. Since the
early days of computer vision, the feature classification approach
has became the essential texture analysis technique for the treat-
ment of textured surfaces [1]. Recently, methods combining region
and boundary information have been suggested [2]. These meth-
ods generate a texture feature space by filtering the image using
Gabor filters. Texture information is then expressed (e.g. statis-
tical measurements) and segmentation 18 achieved using geodesic
contours. These approaches have been extended by using the Bel-
trami flow [3] for denoising the Gabor features, which is used as
an inverse edge detector in the geodesic snakes mechanism [4].

In this paper, an early presented anisotropic diffusion scheme for
color images [5] is applied to vector-valued images that describe
both color and texture features, obtained using Gabor filtering. In
the case of grey level images, a similar approach was proposed
by Rubuer and Tomasi in [6]. After the generation of the mul-
tiscale tower, a region-based segmentation is performed using a
multiscale hierarchical scheme {5] [7], which allows the creation
of a hierarchy among generalized gradient watersheds. The no-
tion of a generalized gradient for color/texture contrast originates
from differential geometry and is often used to estimate gradient
of multi-spectral images [8].

The hierarchical segmentation scheme consists of three basic mod-
ules. The first module retrieves the texture feature images and
combines them with the color information. The second module
is dedicated to attribute a saliency measure to each contour arc at
the localization scale (the finest scale in the scale-space stack), tak-
ing into account the whole multiscale tower. The entire process to
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retrieve the saliency measure for the gradient watersheds requires
three steps: (i) scale-space stack generation by vector-valued non-
linear diffusion filtering. (ii) Linking: At each scale the general-
ized gradient is estimated using the gradient-tensor method [8]. At
the localization scale, the watershed transformation is performed
to identify the position of al! the contours in the image. At the
higher scales, the duality between the regional minima of the gra-
dient and the catchment basins of the watershed is exploited to
make a robust region based parent-child linking scheme. (iti) Con-
tour valuation by downward projection. A combination of the dy-
namics o f contours [9] over the scale-space stack - the dynamics of
conlours in scale-space - is used to valuate the contours detected at
the localization scale. Finally, the last module of our method iden-
tifies the different hierarchical levels through a hypothesis testing
criterion.

The paper is organized as follows. An overview of our hierarchi-
cal segmentation scheme is presented in Section 2. In particular,
Section 2.1 deals with the Gabor transform and the generation of
the color/texture feature space, while Sections 2.2 and 2.3 present
the saliency measure and hierarchical level retrieval modules, re-
spectively. Finally in Section 3 we illustrate segmentation results
on a set of artificial and natural scene images and quote some con-
clusions.

2. HIERARCHICAL MULTISCALE SEGMENTATION

A large class of hierarchical schemes based on superficial or deep
image structure have been adapted to deal with the segmentation
problem. Among them we can site [10][11]){12]{13]{14].

Our main goal is to create a hierarchy among the generalized gradi-
ent watersheds that preserves the topology of the watershed lines at
the localization scale and extracts objects of a larger scale. Let us
first define what we mean by a hierarchy. Let P = {51,82,..., 8}
be the initial partitioning of the image at the localization scale af-
ter the application of the gradient watershed transformation. A
hierarchical level k (H L) is defined as the partitioning PE =
{Sf, Sk .. S,’f,k } which preserves the inclusion relationship P2
P*~), implying that each segment of the set P*isa disjoint union
of segments from the set P71, A hierarchy of partitions is de-
fined as a family which consists of all the hierarchical levels H Ly,
where k € [0, K]. It corresponds to a_hierarchy of Region-Adja-
cency Graphs, G (P*, A*), that are generated by applying suc-
cessive mergings.
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2.1. Color/Texture Feature Space

Spectral decomposition is a common way to describe texture in
image processing. The texture content is usually represented as a
vector-valued image, in which each decomposition band describes
the energy at a given frequency and orientation. The spectral de-
composition using Gabor filtering has often been justified by the
fact that it provides a good approximation of the natural processes
in the primary visual cortex.

A Gabor function is a harmonic wave modulated by a Gaussian.
In [6], the log-Gabor filters are used, since natural textures often
exhibit a linearly decreasing log power spectrum. In the frequency
domain, the log-Gabor filter bank according to the implementation
of Bigun et al. [13, 6] is defined as:

Gij (wrywy) = G wr — w0, weo ey

where {r, ) are polar coordinates, w,.o is the logarithm of the cen-

ter frequency at scale ¢, w0 is the 7" orientation and Glwr, w,)
is defined as:
—w2 —wl
G, =eXpP 50 exp g’zf' (2)
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where a?i and a?,,j are the parameters of the Gaussian, € [1, M]
and 7 € [1, N] for M orientations and N scales. The N orien-
tations are taken equidistant (Eq.3) and the scales are obtained by
dividing the frequency range wm. oz — Whnin into M octaves (Eq.4).

J‘Pi = % 3
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where 5 = %%‘f?ﬂ which yields M octaves 20,40, ...,2M ¢,

The texiure feature images are the magnitudes of the responses of
the Gabor filters. The latter encodes the energy content and is in-
dependent of the position within the texture. Each vector is further
normalized to be a unit vector to emphasize the texture structure
information and reduces the dependance of the responses on light-
ing. This procedure yields a M N hypersphere [6].

For color images spectral decomposition using Gabor filtering is
mostly achieved by processing each color band separately. In [16],
Gabor opponent features are used to describe texture. The Gabor
responses of each color channel interact, according to the oppo-
nent process theory, with the responses of another color channel.
In [17], the color image is transformed to a complex-scalar image
that 1s based upon the #SV colorspace. It is on the complex scalar
image that the Gabor filter is applied.

In this paper, the texture features for color images are obtained
by filtering each color band separately with the Gabor filter bank
for scalar images described above [6]. The latter yields 3 * MN
hypersphere for the texture features and a 343N M -channel image
for the combined color and texture information. We use N = 4
and M = 4 and limit the maximum frequency by the Nyquist
frequency for all experiments.

2.2. Salient Measure Module
2.2.1. Scale-Space Generation

Anisotropic diffusion for image enhancement and denoising has
been extensively studied by a number of authors in recent years [18]
[19][20]. The idea is to smooth the image in a direction parallel to
object boundaries and prevent diffusion across edges. Tradition-
ally, “edges™ are localized in those regions where the gradient of
the image luminance is high. However, a measure based solely in
Iuminance or color contrast does not always produce satisfactory
results. Looking at other image attributes such as texture provides
additional information that can help in localizing image discon-
tinuity. The measure of image features (color, texture, ...) at a
single location leads to a multi-valued representation of the image.
Several vector diffusion PDE’s have been proposed in the litera-
ture [21].

In this work, the multiscale tower of the color/texture feature space
is generated using an anisotropic diffuston for vector-valued im-
ages [7]. It is based upon the regularized Perona and Malik an-
isotropic diffusion scheme [18] and it uses a system of coupled
diffusion equations. The diffusion tensor is a function of the pra-
dient of the color/texture feature space {generalized gradient}. The
latter is estimated using the gradient tensor method [8]. Further-
more the method adopts the Additive Operator Splitting numeri-
cal scheme(40S) [22], which is computational more efficient than
most other schemes.

2.2.2. Linking Scheme

The linking scheme aims to track the regional minima in the gra-
dient through the scale-space. The linking process is applied using
the approach proposed in [10]. The linking of the minima for suc-
cessive scales is applied by using the proximity criterion [23]. This
criterion is limited for projected minima of scale quantization level
8; inside the same geodesic influence zone iz 1 (B,) of a con-
nected component B, of B in A at scale quantization level 3;14:

izy ' (By) = {pe AVj € [1,K/{q),das(p, By) < dalp, B)}

5
Any regional minimum of the set {m £ }, that is spatially pro_ject(eg
on the geodesic influence zone 27 ' (B,) at scale qumti?ation
level 8;11, will be linked with the regional minimum mg**'. The
projected minimum of the set {m } € iz T (By), which i is the
closest to the minimum m3t?, is consndered as the father. The
rest of the projected minima onto the same influence zone are con-
sidered annihilated. Closeness is defined with respect to the topo-
graphic distance which is a natural distance measure following the
steepest gradient path inside the catchment basin. At the end of
the linking step, for each couple of neighboring segments (5;, S;)
that share a common border at the localization scale, a linkage list
A(S3, 55} is constructed.

2.2.3. Contour Valuation by Down-projection

The next step is to valuate the gradient watersheds at the localiza-
tion scale sg. For each segment couple (SM:"’S ) SA(S“S’)"‘)
appearing at the branch m (scale quantization level 3m) of the link-
age list A(S;, §;), we compute the dynamics of contours
DCRs,, 5;)m (9] It expresses how much contrasted the adjacent
regions (.5;, 5;) are at the scale quantization level 8, . The dynam-
ics of contours at each scale are normalized according to the maxi-
mum dynamic at that scale and finally the dynamics of contours in
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scale-space (DC'S) for the adjacent region couple (55, S;) is de-
fined as the sum for all normalized valuations during the evolution
it scale-space:

N—-1 DCR”(S 5
DCS(Si’Sj)=Z max DC'"‘J

m=0 $3,5;€8m A58 )m

(6

where N denotes the branch of the linkage list A(S;, S;) where
the contour formed by the region couple {5;, S,) is annihilated.
Bach arc o = (85, 5;) € A, of the RAG Go(PP, AY), is ranked
according to their saliency measure DCS(5:, S;).

2.3. Hierarchical level retrieval

This module identifies the hierarchical levels. Starting from the

watershed segmentation at the localization scale, a successive merg-
ing operation is performed until a stopping criterion is satisfied.

The merging of adjacent segments is based upon a color similarity

measure, while the merging sequence (order) is given by the valu-

ation (dynamics of contours in scale-space) of the contours [24).

3. RESULTS AND DISCUSSION

In this paper, we introduce texture to the multiscale hierarchi-

cal segmentation method proposed in [5, 7). The salient mea-

sure (Section.2.2) that creates the multiscale hierarchy, is now based
upon color, as well as texture. On the other hand, the extraction of
the different hierarchical levels uses solely color information.

In Fig.1, the evolution of both the color gradient and the gener-

alized gradient in the scale-space tower for the image shown in

Fig.2.ab, is illustrated. Diffusing the color feature space, enhances

the contrast between the textons, while the diffusion the color-

texture feature space smooths the textured areas so that the relative

contrast of the real segments increases. In Fig.2, we compare the

Fig. 1. Top. Color gradient in scale-space. Bottom. Generalized
gradient in scale-space. The scale increases form left to right. Blue
values correspond to low contrast and the red values denote areas
of high contrast.

hierarchical levels that are retrieved from the hierarchy build using
only celor information (Fig.2a and Fig.2¢) and the one generated
using both color and texture (Fig.2b and Fig 2d). We demonstrate
that for an image that is created using textures from the Vision
Texture database ' (Fig.2ab} , the color based salient measure can

Uhttp://www-white. mmedia.mit.edu/vismod/imagery/VisionTexture/
vistex.html

not create a hierarchy that enables the separation of the different
texture patterns, where as the color-texture based salient measure
creates a meaningful hierarchy that allows the extraction of a hi-
erarchical level that separates the four different textures. For nat-
ural scene images, both salient measures yield meaningfut hierar-
chies. In the case of the color based salient measure, small but
color-contrasting segments persist at the coarser hierarchical lev-
els (Fig.2c). The color-texture based salient measure can identify
these segments as part of textured segments and insures that this
type of segment is only preserved in the finer hierarchical levels
(Fig.2d).

The hierarchical level retrieval module simply identifies the dif-
ferent levels of abstraction in the created hierarchy. In order to
select a final segmentation result, one needs to select the level of
abstraction that is appropriate for further processing [7]. In Fig.3,
we show the optimal hierarchical level for the hierarchy that is
created by the color-texture based salient measure, according to
a segmentation quality measure that relies upon (i) intra-segment
uniformity, (ii) inter-segment contrast, and (iii) smoothness of the
boundaries between segments [25, 24]. Fig.3a and Fig.3c are test
images used by Petrou et al. in [26]. Both segmented images
render the correct amount of segments. However, there are some
deviations with the ideal segment border. In the case of Fig.le,
the segmentation renders 42 segments, which is somewhat over-
segmented. Fimally, Fig.3b, Fig.3d and Fig.3f are natural scene
images that contain textured animals. For all three images, rela-
tively good segmentations are obtained. However, there is a clear
undersegmentation present. The latter can be solved by selecting
a finer hierarchical level from the hierarchical stack. In the case
of natural scene and color-textured images, we can conclude that
the incorporation of texture features in our muitiscale segmenta-
tion scheme leads to better results than the ones obtained using
only color information.
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