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ABSTRACT 

Mutual information (MI) is currently the most popular match 
metric in handling the registration problem for multi modal- 
ity images. However, interpolation artifacts impose deteri- 
orating effects to the accuracy and robustness of MI-based 
methods. This paper analyzes the generation mechanism of 
the artifacts inherent in partial volume interpolation (PVI) 
and shows that the mutual information resulted from PVI 
is a convex function within each voxel grid. A new joint 
entropy estimation scheme using prior information is pro- 
posed to reduce the artifact effects and we demonstrate the 
improvements via experiments on misalignments between 
M R  brain scans obtained using different image acquisition 
protocols. 

1. INTRODUCTION 

Image registration is one of the most widely encountered 
problems in a variety of fields including but not limited 
to medical image analysis, remote sensing, satellite imag- 
ing, optical imaging etc. Broadly speaking, image registra- 
tion methods can he classified into two classes [9],  namely 
feature-based and direct methods. Feature-based methods 
typically involve extracting features such as suriaces, ridges, 
landmark points etc., and then using a match metric to find 
a matching between them under a class of parameterized or 
more generally non-parameterized transformations. Direct 
methods subsume the approaches operating directly on the 
image grey values, without prior feature extraction. 

The class of approaches hased on intensity similarity 
measures have gained popularity in recent years. Variance 
o fh tens ip  Ratio is the first and simplest statistical mea- 
sure proposed by Woods et al. [ l l ]  for registering PET and 
MRI images. Leventon et al. [5] proposed a method based 
on matching the Joint Intensily Distribution of current in- 
put image with the priorjoint intensity distribution obtained 
from training data sets. 

Currently the most popular approach is based on the 
concept of maximizing mutual information reported in M- 
ala and Wells etal. [IO], Collignon et al. [2] and Studholme 
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et al. [8]. For more on medical image registration algo- 
rithms, we refer the reader to the survey by Maintz et al. 
[61. 

Although MI methods are regarded as the hest choice 
for the multimodal image registration problem, a number of 
studies have pointed out that the robustness and accuracy 
of MI metric is deteriorated by the interpolation artifact ef- 
fects. Several methods have proposed to address this prob- 
lem [2, 3, 4, 71. 

This paper is a further investigation of the artifacts prob- 
lem. The generation mechanism of the artifact associated 
with the partial volume interpolator, which is-regarded as 
the best choice among all possible interpolators. is analyzed 
and correspondingly, several remedies are proposed. Ex- 
periment results using MR TI/T2 images are provided to 
demonstrate the improvements. 

2. MUTUAL INFORMATION METRIC AND 
ARTIFACT EFFECTS 

Consider two images I,(z, y) and I,(z, y). We designate 
I, as the reference image and I, as the floating image. Reg- 
istration is to find the coordinate transformation, denoted 
as T,  such that transformed floating image I , (T(z ,y ) )  is 
aligned with the reference I,(z, y). The alignment is uso- 
ally obtained by optimizing a certain similarity metric. So 
normally a registration algorithm consists of three compo- 
nents [6 ] :  a coordinate transform, a similarity criteria, and a 
numerical scheme to seek the optimum. 

Mutual information is currently the most popular match- 
ing metric being used in handling the registration problem 
for multimodal images. The MI between two discrete ran- 
dom variables, A and B, is defined as: 

M I ( A ,  B )  = H ( A )  + H ( B )  - H(A,  B )  ( I )  

with H ( A )  and H ( B )  being the entropy of A and B, and 
H ( A ,  B )  theirjoint entropy. 

H ( A )  = -C,Pa(a) l'JgPA('J) 

f f ( A , B )  = -C,,aPAfJ(%h) k"%'?3('4b) 
( 2 )  
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where p a ( a ) ,  p ~ ( b )  and paa(a, b)  are the marginal proba- 
bility distributions and joint probability distribution, respec- 
tively. 

Given a set of samples, there are several approaches to 
estimate the probability functions p a B ( a ,  b),  most notably 
the histogram-based method [2] and Parzen window method 
[IO]. In this paper, we focus on histogram-based method 
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because it's widely used in image registration. To register MI 
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the images the mutual information is to he maximized. 
For digital images L ( z , y )  and I f ( z , y )  to he aligned, 

interpolation is necessary to evaluate the values of Mr(Ir (z, y), 
I , (T(z ,y ) ) ) .  A number of interpolators are available, in- 
clnding nearest neighbor (NN), linear, cubic spline, Hamanning- 

a7 
-5 5 windowedsinc and partial volume (PV) interpolators. Among 

them, PV is regarded as the hest choice for MI-based met- 
ncs, as pointed out by several studies [ 3 ,  71. 

Partial volume interpolation is not an interpolation in the 
ordinary sense. It is a strategy being used to update the joint 
histogram. Instead of interpolating the new intensity value 
under current transformation T ,  PV directly updates the his- 
togram of the nearest neighbor bins with the same weights 
used in bilinear (for 2D) or trilinear (for 3D) interpolation. 

In [7], Maintz et al. qualitatively explained the reason 
why artifacts are generated in partial volume interpolation 
process and verified their arguments through several well- 
designed experiments. While their work is very informative, 
we believe that a theoretically quantitative analysis concem- 
ing the generation mechanism of artifacts will be more in- 
structive to guide the related research. 

As interpolation affects the registration function of nor- 
malized MI and traditional MI in a similar way [7], we will 
construct our arguments based on traditional MI in this pa- 
per, but it should be noted that the conclusions also hold for 
normalized MI. 

As given above, the mutual information M I ( A , T ( B ) )  
consists o f 3  terms: H ( A ) ,  H ( B )  and H(A,Z(B)). H(A)  
is a constant. The computation of H ( T ( B ) )  is also affected 
by the interpolation effect, but in a much smaller extent. 
Figure I shows a pair of aligned MWCT images and the 
associated marginal entropies, joint entropy and MI values 
as functions of translations up to f 7  pixel distances. As 
evident, the variation of MI is dominated by the changes in 
H ( A I T ( B ) ) ;  H ( A )  and H ( T ( B ) )  are close to constants. 
So from now on, we will focus only on H ( A ,  T ( B ) ) .  

Let's First consider the situation where the reference and 
floating images have exactly the same pixel sizes and the 
motion is limited to translations only. We use the CT image 
in Figure I as the reference, while MR is the floating im- 
age. We now analyze the variation of MI function when the 
floating image moves from the alignment position to 1 pixel 
away along z axis. 

Suppose at the alignment position (translation is equal 
to zero), a certain histogram bin h i s (a ,  b )  has a value of 
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Fig. 1. The mutual information value of a pair of mul- 
timodal images. Row l contains a pair of MIUCT im- 
ages. Row 2 and row 3 shows the mutual informa- 
tion(Ml),marginal entropies ( H ( A )  and H(T( B ) ) )  and 
joint entropy ( ( H A ,  T ( B ) ) )  values as functions of transla- 
tions t (up to *7 pixels). 

MI. The bin &(a, b )  records the total number of pix- 
els in the image pair where the reference image has inten- 
sity a, and floating image b. Suppose when the transla- 
tion is 1 pixel, his(a,  b )  becomes M z .  Let's redefine the 
&(a, b) to his(a,  b, t )  to include the translation variable, 
hence his(u,b,O) = MI and his(a,b, 1) = M2. In be- 
tween, with the translation being t ,  there are a group of in- 
tensity grids S1 = {(z,,y1), ( z 2 , y a )  ...} that were origi- 
nally contributing to the bin 
&(a, b), gradually wipe out their support when the float- 
ing image is moving. Let's call this group of grids as the 
moving-out set, and let At be the total number of these 
grids. Because the motion here is limited to lranslation only, 
all the grids in the moving-out set are withdrawing their con- 
tributions to the bin &(a,  b )  at the same rate, as the trans- 
lation increases from 0 to 1. When the translation is 0, each 
of them contribute an '1' to his(a, b ) ;  when the offset is 1, 
they do not have contribution any more. In between, the 
contribution of the each moving-ant grid is 1 - t .  

Similarly, there might he another group of grids Sa (let 
AL) he the total number) that were not originally contribnt- 
ing to his(n, b), start moving in to contribute to his(a,  h )  
as the translation increases from 0 lo 1. Their individual 
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contribution to &(a, b)  is 't' at translation t .  

out sets lead to the change of &(U,  b) .  So we have: A2 - 
A1 = A42 - M1. At translation t: 

Overall, the combinedeffects ofthe moving-iu and moving- 

&(a, b , t )  = M I  + Azt - Alt = M i  + (A42 - M1) t n 

= t M 2 + ( 1 - t ) M 1  

I. 

So basically within interval [0,1], the bin value &(a, b, t )  
is a linear function of the offset variable t ,  denoted here by 
f ( t ) :  f(0) = Ml,  f(1) = M2,  

f ( t )  = t f(1) + (1 - 6) f(0). (3) "7. -0, 

Since we use histogram to approximate distribution, the 
jointentropyoftwoimagescanberewrittenasH(A,T(B)) = 
- his(a, b, t )  log &(a, b , t ) .  As we know, the func- 
tion z log a, denoted by g(z) here, is a convex function 
within the interval (,O, I ]  (note its second derivative is posi- 
tive), i.e.: 

S ( t  21 + (1  - t )  22) 5 1 d . 1 )  + (1 - t )  s ( 4  
Therefore, the individual contribution ofthe bin k i s ( n ,  b, t )  

to the joint entropy H(A, T(B)) follows: 

g(f(t))  = d(1 - t )  f(0) + t f(1)) i4) 5 (1 - t )  s(f(0)) + t  s(f(1)) 
The inequality above indicates that each component of 

H ( A , T ( B ) )  is a convex function within [0,1/, Since the 
summation of convex functions is still a convex function, 
H(A,T(B)) = -CCg(his(a,b,t)) ,asanegatNecom- 
bination of certain number of convex functions, is a cnn- 
cave function in [0, 11. Correspondingly, the MI responses 
is a convex function in the same interval. This property 
can be easily extended the any intervals [n, n+ 11 where n is 
an integer. That's the reason the respomes of H(A,T(B) )  
as  a function of translation t (Figure 1) bears a concave- 
shaped altifact within each integer interval. 

The above analysis indicates that the heart of the arti- 
facts generation mechanism lies in the following fact: all the 
moving-in and moving-out grids contribute to the change of 
the bin value at a synchronized pace. As a consequence, 
a general guideline to reduce the artifact effects can he "to 
break the synchronization". 

In addition, the following prediction can be made based 
on the above analysis: 

The artifact effect for pure rotations would he less se- 
vere than that of pure translations. This is because the 
moving-in and moving-out grids, under the pure rota- 
tion motion scenario, do not contribute to the change 
of histogram in a uniformly rate. Figure 2.a. shows 
the H ( A ,  T(B)) values a s a  function for rotations (up 
to &IS"). As evident, the responses for rotations are 
much smoother than the tramlation counterpart 

Fig. 2. Row 1 contains a pair of MWCT images. Row 2 
shows the mutual information (MI) value as a function to 
rotaions (+2Ooj. 

2.1. Artifacts Reduction 

Based on the aholve analysis, we propose the an artifact 
effects reduction scheme based on integrating prior infor- 
mation. The idea is to wipe out the concave function por- 
tion of the joint entropy, with the linear function pad kept. 
This task can he mostly done by combining the joint en- 
t ropyH(4 ,T(B) )  withapriorjoint entropy H*(A ,  T (B) ) .  
The justification is based on the assumption that the train- 
ing data would provide a prior joint probability that is sim- 
ilar to the probability of the test data, therefore the arti- 
fact part can be effectively removed by subtracting the con- 
cave function palt of the prior joint entropy. To achieve 
this end, we replace the MI metric with a modified version: 
M l ( A , T ( B ) )  = H ( A ) + H ( T ( B ) )  - ( H ( A , T ( B ) )  

Suppose T is a 2D rigid transform vector 
{a,  da, dy}, let 

Too = {a,  f l o o v ( W ,  f l O 4 d Y ) )  
Tol = { a , f l o o r ( ~ ) , c e i l ( d y ) }  
T I 0  = {a,ceil(dz),floor(dy)} 
T11 = {a, cei l (dz) ,cei l (dy)} ,  

where floor and ceil stand for floor and ceiling opera- 
tions respectively. The modified joint entropy B(A, T(  B ) )  
is defined as follows: 

A ( A , T ( B ) )  = H ( A , T ( B ) )  - H*(A ,T(B) )  
+ BiLinear(H'(A,To~(B)) ,  H ' (A ,  Tol(B)) ,  

H'W, Tto(B)), H*(A,Tii(B))), 
where BiLinear is the bilinear interpolation operation. 

Figure 3 depicts the registration for the new MI func- 
tion. The top let? subfigure of Figure 3 shows the MI arti- 
fact patterns for the CTMR test image. The top right shows 
the concave function that is obtained from a pair of regis- 
tered training images. As evident in the bottom suhfigure, a 
significant reduction of interpolation artifacts was achieved 
atler subtracting the concave function. 
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Fig. 3. Top left: The MI artifact patterns for the CTMR 
image pair. Top right: The prior concave function to be 
subtracted. Bottom left: M I  responses after suhstracting 
the prior concave function. 

3. EXPERIMENT RESULTS 

In this section, we demonstrate the robustness property of 
the new MI computation method proposed in the previous 
section. All the examples contain synthesized miss-alignments 
applied to MR data sets from the hrainweb site at the Mon- 
treal Neurological Institute [I]. 

The experiments are designed as follows: with a 2D MR 
TI slice as the reference image, the floating image is oh- 
tained by applying a rigid transformation to a previously 
aligned 2D MR T2 image. 

With 15 randomly generated rigid transformations, we 
applied our Integrating Prior Joint Entropy algorithms 
together with the traditional MI method to estimate motion 
parameters. These transformations are normally distributed 
around the values of (0”, lOpizel ,  lopizel), with standard 
deviations of (so,  3ppizel3pirel) for rotation and translation 
in 3: and y respectively. 

Table 1 depicts the mean and standard deviation of the 
estimation errors obtained from the 2 methods. In each 
cell, the leftmost value is the rotation angle (in degrees), 
while the right two values show the translations in x and 
y directions respectively. Out of the 15 trials, the tradi- 
tional MI failed 5 times while the Integrating Prior  Joint 
Entropy never failed (“failed here means that the results 
had unacceptably large errors). If we only count the cases 
which gave reasonable results, as shown in the first (fur In- 
tegrating Prior Joint Entropy) and third (for traditional 
MI) rows, our approach and the traditional MI have compd- 
rahle performances, all being very accurate. Note that Pow- 
ells method was used as the optimization scheme in these 
experiments. 

I mean I standard deviation 
1 I 0.132’ 0.293 0.372 1 0.012’ 0.112 0.230 
2 I 0.087” 0.293 0.383 I 0.031” 0.121 0.129 

Table 1. Comparison of estimation errors for rigid motion 
between Integrating Prior Joint Entropy and traditional MI. 

4. CONCLUSIONS 

In this paper, we quantitatively analyzed the generation mech- 
anism of the interpolation artifacts. Two remedies: Slightly 
Rescaling and Including Prior Joint Entropy were proposed 
to reduce the artifact effects. Comparisons were made be- 
tween the traditional MI and the two modified MI imple- 
mentations. Experimental results depicted better performance 
of using the modified method over the traditional MI. 
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