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ABSTRACT et al. [8]. For more on medical image registration algo-

Mutual information (MI) is currently the most popular match
metric in handling the registration problem for multi modal-
ity images. However, interpolation antifacts impose deteri-
orating effects to the accuracy and robustness of MI-based
methods. This paper analyzes the generation mechanism of
the artifacts inherent in partial volume interpolation (PVI)
and shows that the mutual information resulted from PVI
is a convex function within each voxel grid. A new joint
entropy estimation scheme using prior information is pro-
posed to reduce the artifact effects and we demonstrate the
improvements via experiments on misalignments between
MR brain scans obtained using different image acquisition
protocols.

1. INTRODUCTION

Image registration is one of the most widely encountered
problems in a variety of fields including but not limited
to medical image analysis, remote sensing, satellite imag-
ing, optical imaging etc. Broadly speaking, image registra-
tion methods can be classified into two classes [9], namely
feature-based and direct methods. Feature-based methods
typically involve extracting features such as surfaces, ridges,
landmark points etc., and then using a match metric to find
a matching between them under a class of parameterized or
more generally non-parameterized transformations. Direct
methods subsume the approaches operating directly on the
image grey values, without prior feature extraction.

The class of approaches based on intensity similarity
measures have gained popularity in recent years. Fariance
of Intensity Ratio is the first and simplest statistical mea-
sure proposed by Woods et al. [11] for registering PET and
MRI images. Leventon er @l [5] proposed a method based
on matching the Joint Intensity Distribution of current in-
put image with the prior joint intensity distribution obtained
from training data sets.

Currently the most popular approach is based on the
concept of maximizing mutual information reported in Vi-
ola and Wells eral. [10], Collignon er @/, [2] and Studholme
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rithms, we refer the reader to the survey by Maintz er. al
[6].

Although MI methods are regarded as the best choice
for the multimodal image registration problem, a number of
studies have pointed out that the robustness and accuracy
of MI metric is deteriorated by the inferpolation artifact ef-
fects. Several methods have proposed to address this prob-
lent [2, 3, 4, 7).

This paper is a further investigation of the artifacts prob-
lem. The generation mechanism of the artifact associated
with the partial velume interpolator, which isregarded as
the best choice among all possible interpolators, is analyzed
and correspondingly, several remedies are proposed. Ex-
periment results using MR T1/T2 images are provided to
demonstrate the improvements.

" 2, MUTUAL INFORMATION METRIC AND
ARTIFACT EFFECTS

Consider two images I, (z,y) and I¢(z,y). We designate
I, as the reference image and [ as the floating image. Reg-
istration is to find the coordinate transformation, denoted
as T, such that transformed floating image I;(T(z,y)) is
aligned with the reference [.(x,y). The alignment is usu-
ally obtained by optimizing a certain similarity metric. So
normally a registration algorithm consists of three compo-
nents [6]: a coordinate transform, a similarity criteria, and a
numetrical scheme to seek the optimum.

Mutual information is currently the most popular match-
ing metric being used in handling the tegistration problem
for multimodal images. The MI between two discrete ran-
dom variables, A and B, is defined as:

MI(A, B)=H(A) + H(B) - H(A,B) (1)

with H({A) and H(B) being the entropy of A and B, and
H(A, B) their joint entropy.

 H(A) = ~ ¥, pala) tog pafa)

II(Ar B) = —Za,prB(aa b) log PAB(C": b)

(2)
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where pa(a), pp(h) and pag(a, b) are the marginal proba-
bility distributions and joint probability distribution, respec-
tively.

Given a set of samples, there are several approaches to
estimate the probability functions p4p(a,b), most notably
the histogram-based method [2] and Parzen window method
[10]. In this paper, we focus on histogram-based method
because it’s widely used in image registration. To register
the images the mutual information is to be maximized.

For digital images I.(z,y) and I¢(z,y) to be aligned,

interpolation is necessary to evaluate the values of M I(I, (z, y),

I¢(T{x,v))). A number of interpolators are available, in-

cluding nearest neighbor (NN, linear, cubic spline, Hamanning-

windewed sinc and partial volume (PV) interpolators. Among
them, PV is regarded as the best choice for MI-based met-
rics, as pointed out by several studies [3, 7].

Partial volume interpolation is not an interpolation in the
ordinary sense. It is a strategy being used to update the joint
histogram. Instead of interpolating the new intensity value
under current transformation I, PV directly updates the his-
togram of the nearest neighbor bins with the same weights
used in bilinear (for 2D) or trilinear (for 3D) interpolation,

In [7], Maintz ef al. qualitatively explained the reason
why artifacts are generated in partial volume interpolation
process and verified their arguments through several well-
designed experiments. While their work is very informative,
we believe that a theoretically quantitative analysis concern-
ing the generation mechanism of artifacts will be more in-
structive to guide the refated research.

As interpolation affects the registration function of nor-
malized MI and traditional MI in a similar way [7], we will
construct our arguments based on traditional MI in this pa-
per, but it should be noted that the conclusions also hold for
norimalized ML

As given above, the mutual information MI{A, T(B))
consists of 3 terms: H{A), H(B) and H(A,T(B)). H(A)
is a constant, The computation of H{T'(B)) is also affected
by the interpolation effect, but in a much smaller extent.
Figure 1 shows a pair of aligned MR/CT images and the
associated marginal entropies, joint entropy and MI values
as functions of translations up to £7 pixel distances. As
evident, the variation of MI is dominated by the changes in
H(A,T(B)); H(A) and H(T(B)) are close to constants.
So from now on, we will focus only on H(A, T(B)).

Let’s First consider the situation where the reference and
floating images have exactly the same pixel sizes and the
motion is limited to translations only. We use the CT image
in Figure 1 as the reference, while MR is the floating im-
age. We now analyze the variation of M! function when the
fleating image moves from the alignment position to 1 pixel
away along z axis.

Suppose at the alignment position (translation is equal
to zero), a certain histogram bin his{a,b) has a value of
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Fig. 1. The mutual information value of a pair of mul-
timodal images. Row 1 contains a pair of MR/CT im-
ages. Row 2 and row 3 shows the mutual informa-
tion(MI),marginal entropies (H(A) and H(T(B))) and
joint entropy ({ HA,T(B))) values as functions of transla-
tions ¢ (up to £7 pixels).

M. The bin his(a,b) records the total number of pix-
els in the image pair where the reference image has inten-
sity @, and floating image b. Suppose when the transla-
tion is 1 pixel, his(a, b) becomes M>. Let’s re-define the
his(a,b) o his(e, b, t) to include the translation variable,
hence his{w,b,0) = M, and his(a,b,1) = M,. In be-
tween, with the translation being ¢, there are a group of in-
tensity grids X1 = {(z,v1), (@2, y2)...} that were origi-
nally contributing to the bin

his(a,b), gradually wipe out their support when the float-
ing image is moving. Let’s call this group of grids as the
moving-out set, and let A; be the total number of these
grids. Because the motion here is limited to translation only,
all the grids in the moving-out set are withdrawing their con-
tributions to the bin his(a, b) at the same rate, as the trans-
lation increases from O to 1. When the translation is ©, each

.of them contribute an ‘1’ to his(a, b); when the offset is 1,

they do not have contribution any more. In between, the
contribution of the each moving-out gridis 1 —¢.
Similarly, there might be another group of grids X5 (let
As be the total number) that were not originally contribut-
ing to his{a, b}, start moving in to contribute to his{a, b)
as the transtation increases from 0 1o 1. Their individual
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contribution to his(a, b) is 't at translation ¢.

Overall, the combined effects of the moving-in and moving-

out sets lead to the change of his{e,b). So we have: Ay —
Ay = M; — M1, Attranslationt:

his(a,b,t) = My + Agt — Ajt = M, + (M2 - M1)¢

LMy 4+ (1~8) My

I

So basically within interval [0, 1], the bin value his{a, b, £)
is a linear function of the offset variable £, denoted here by

f@) f(0) = M1, j(1) = M2,
f@) =t f(1)+ (1 —£) f(0). G}

Since we use histogram to approximate distribution, the

joint entropy of two images can be rewrittenas H(A, T(B)) =

— 2o fis(a,b,t) log his{a,b,t). As we know, the func-
tion x log z, denoted by g(z) here, is a convex function
within the interval (0, 1] (note its second derivative is posi-
tive), i.e.:

git e+ (1—t) z2) <t glm) + {1 —t) g(z2)

Therefore, the individual contribution of the bin his(a, b, ¢)

to the joint entropy H(A, T(B)) follows:

g(f()) g((1 ) £{0) +1 (1)) )
(1 —1) g(f(0)) +¢ g(f(1))

The inequality above indicates that each component of
H(A,T(B)) is a convex function within (0,1]. Since the
summation of convex functions is still a convex function,
H(A, T(B)) = —3_ > g(his(a, b, t)}, as a negative com-
bination of certain number of convex functions, is a con-
cave function in [0, 1]. Correspondingly, the M1 responses
is a convex function in the same interval. This properly
can be casily extended the any intervals [n, n+ 1] where n is
an integer. That’s the reason the responses of H{A, T(B))
as a function of translation ¢ (Figure 1) bears a concave-
shaped artifact within each integer interval.

The above analysis indicates that the heart of the arti-
facts generation mechanism lies in the following fact: all the
moving-in and moving-out grids contribute to the change of
the bin value at a synchronized pace. As a consequence,
a general puideline to reduce the artifact effects can be “to
break the synchronization”.

In addition, the following prediction can be made based
on the above analysis:

<

o The artifact effect for pure rotations would be less se-
vere than that of pure translations. This is because the
moving-in and moving-out grids, under the pure rota-
tion motion scenario, do not contribute to the change
of histogram in a uniformly rate. Figure 2.a. shows
the H(A, T(B)) values as a function for rotations (up
to £15°). As evident, the responses for rotations are
much smocther than the translation counterpart.
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Fig. 2. Row 1 contains a pair of MR/CT images. Row 2
shows the mutual information (MI) value as a function to
rotaions (207).

2.1." Artifacts Reduction

Based on the abolve analysis, we propose the an artifact
effects reduction scheme based on integrating prior infor-
mation. The idea is to wipe out the concave function por-
tion of the joint entropy, with the linear function part kept.
This task can be mostly done by combining the joint en-
tropy H{A, T'(B)) with a prior joint entropy H*{ A, T(B)).
The justification is based on the assumption that the train-
ing data would provide a prior joint probability that is sim-
ilar to the probability of the test data, therefore the arti-
fact part can be effectively removed by subtracting the con-
cave function part of the prior joint entropy. To achieve
this end, we replace the MI metric with a modified version:
MI(A,T(B)) = H(A)+ H{T(B)) — (H(A,T(B))

Suppose T is a 2D rigid transform vector

{o, dz, dy}, let

Too = {a, floor(dz), floor(dy)}
To1 = {e, floor(dzx), cest{dy)}
T = {o, ceil{dz), floor(dy)}
T = {a, ceil{dz), ceil(dy) },

where floor and ceil stand for floor and ceiling opera-
tions respectively. The modified joint entropy H (A, T(B))
is defined as follows:

CH(A,T(B)) = H(A, T(B)) — H*(A,T(B))
+ BiLinear(H* (A, Too(B)), H* (4, To (B)),
H*(A, To(B)), H* (A, Tu(B))),

where BiLinear is the bilinear interpolation operation.

Figure 3 depicts the registration for the new MI func-
tion. The top left subfigure of Figure 3 shows the MI arti-
fact patterns for the CT/MR test image. The top right shows
the concave function that is obtained from a pair of regis-
tered training images. As evident in the bottom subfigure, a
significant reduction of interpolation artifacts was achieved
after subtracting the concave function.
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Fig. 3. Top left: The MI artifact patterns for the CT/MR
image pair. Top tight: The prior concave function to be
subiracted. Bottom lefi: M responses afler substracting
the prior concave function.

3. EXPERIMENT RESULTS

In this section, we demonstrate the robustness property of
the new MI computation method proposed in the previous

section. All the examples contain synthesized miss-alignments

applied to MR data sets from the brainweb site at the Mon-
treal Neurological Institute [1].

The experiments are designed as follows: witha 2D MR
T1 slice as the reference image, the floating image is ob-
tained by applying a rigid transformation to a previously
aligned 2D MR T2 image.

With 15 randomly generated rigid transformations, we
applied our Integrating Prior Joint Entropy algorithms
together with the traditional MI method to estimate motion
parameters. These transformations are normally distributed
around the values of (0°, 10pizel, 10pizel), with standard
deviations of (5°, 3pizel 3piwel) for rotation and translation
in = and y respectively.

Table ! depicts the mean and standard deviation of the
estimation errors obtained from the 2 methods. In each
cell, the leftmost value is the rotation angle (in degrees),
while the right two values show the translations in x and
y directions respectively. Out of the 15 trials, the tradi-
tional MI failed 5 times while the Integrating Prior Joint
Entropy never failed (“failed™ here means that the results
had unacceptably large errors). 1f we only count the cases
which gave reasonable results, as shown in the first (for In-
tegrating Prior Joint Entropy) and third (for traditional
MTI) rows, our approach and the traditional M1 have compa-
rable performances, all being very accurate. Note that Pow-
clls method was used as the optimization scheme in these
experiments.

mean standard deviation
0.203 0.372 0.012° 0.112 0.230
0.263 0.383 0.031° 0121 0.129

1 0.132°
2 0.087°

Table 1. Comparison of estimation errors for rigid motion
between Integrating Prior Joint Entropy and traditional ML

4, CONCLUSIONS

In this paper, we quantitatively analyzed the generation mech-
anism of the interpolation artifacts. Two remedies: Slightly
Rescaling and Including Prior Joint Entropy were proposed
to reduce the artifact effects. Comparisons were made be-
tween the traditional MI and the two modified MI imple-
mentations. Experimental results depicted better performance
of using the modified method over the traditional MI.
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