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ABSTRACT 

In this paper we present a multimodal audio-visual speaker identi- 
fcation system. The objective is to improve the recognition perfor- 
mance over conventional unimodal schemes. The proposed system 
decomposes the information existing in a video stream into three 
components: speech, face texture and lip motion. Lip motion 
between successive frames is frst computed in terms of optical 
Ww vectors and then encoded as a feature vector in a magnitude- 
direction histogram domain. The feaNre vectors obtained along 
the whole stream are then interpolated to match the rate of the 
speech signal and fused with me1 frequency cepstral coeffcients 
(MFCC) of  the corresponding speech signal. The resulting joint 
feature vectors are used to train and test a Hidden Markov Model 
(HMM) based identifcation system. Face texture images are treated 
separately in eigenface domain and integrated to the system through 
decision-fusion. Experimental results are also included for demon- 
stration of the system performance. 

1 .  INTRODUCTION 

Biometric person identifcation, in the most general case, refers to 
identifcation of a person from a set of candidates using herhis 
biometric data. Different biometric signals such as face, voice, 
fngerprints, signature strokes, iris and retina scans can be used 
to perform this identifcation task. It is generally agreed that no 
single biometric technology will meet the needs of all potential 
identikation applications. Although the performance of several of 
these biometric technologies have been studied individually, there 
is little work reported in the literature on the fusion of the results 
of various biomemc identifcation technologies [I]. 

A particular problem in multimodal biometric person identi- 
fcation, which has a wide variety of applications, is the speaker 
identifcation problem where basically two sources of information 
exist: audio signal (voice) and video signal. Speaker identifcation, 
when performed over audio streams, is probably one of the most 
natural ways to perform person identifcation. However, video 
stream is also an important source of biometric information, in 
which we have still images of biometric features such as face and 
also the temporal motion information such as lip movement, which 
is correlated with the audio stream. Most speaker identifcation 
systems rely on audio-only data 121. Even assuming ideal noise- 
less conditions, such systems are far from being perfect for high 
security applications. The same observation is also valid for sys- 
tems using only visual data, where poor picture quality or changes 
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in lighting conditions signifcantly degrade performance [3]. A 
better alternative is the use of all available modalities, i.e. audio, 
motion and texture, in a single identifcation scheme. 

Lip movement is a natural by-product of  the speaking act. 
Information inherent in lip movement has so far been exploited 
mostly for the speech recognition problem, establishing a one-to- 
one correspondence with the phonemes of speech and the visemes 
of lip movement. It is quite natural to assume that lip movement 
would also characterize an individual as well as what the individ- 
ual is speaking. Only few articles in the literature incorporate lip 
information for the speaker identifcation problem [4,5]. Although 
these works demonstrate some improvement over unimodal tech- 
niques, they use a decision-fusion strategy and hence do not fully 
exploit the mutual dependency between lip movement and speech 
14.61. In this paper we propose an HMM-based speaker identifca- 
tion scheme for joint use of the lip movement and the audio signal 
of a speaking individual with data-fusion, i.e. early integration of 
audio and visual features [7]. In the joint feature vector, optical 
Dow vectors tranformed into a magnitude-direction histogram do- 
main constitute the visual motion part and MFCCs constitute the 
audio part. Visual texNre information, i.e. face images, expressed 
in eigenface domain is integrated to the system through decision- 
fusion. 

2. MULTIMODAL SPEAKER IDENTIFICATION 

In this study a text-dependent multimodal speaker identifcation 
system is considered. The database consists of audio and video 
signals belonging to individuals of a certain population. Each per- 
son in this database utters a predefned secret phrase that varies 
from one person to another. The objective is, given the data of an 
unknown person, to f n d  whether this person matches someone in 
the database or not. The system identifes the person if there is a 
match and rejects if not. The proposed system should also be ro- 
bust against false identity claims, Our goal is to fully exploit the 
spatial and temporal correlations existing in a video stream and 
thereby to characterize the.biometric properties of a speaker. 

2.1. Face and Lip Detection 

The frst step in extracting visual features is to detect face and lip 
regions. We assume that the acquired images contain the face of a 
speaking person with a stationary background. A possibility here 
would be using a simple change detection algorithm. Such simple 
algorithms arc computationally attractive; however they arc usu- 
ally very sensitive to noise, changing light and possible small cam- 
era movements. Thus we propose an optical now based detection 
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technique that gives more accurate and reliable results. Optical 
now vectors are frst computed between successive frames of the 
video sequence [SI. The magnitudes of these vectors are accumu- 
lated in a buffer and then thresholded. The rectangular region en- 
closing the pixels survived after thresholding gives the face frame. 
Once face is detected, then in this region we search for the lip, as- 
suming that the lip constitutes thc largest portion of the face that 
dominates the overall movement. A second thresholding of opti- 
cal now vector magnitudes in the detected face region, followed 
by morphological processing to Ell up small holes and eliminating 
small isolated regions provides us with moving, possibly separate 
portions of the lip. Around the center of gravity of these partial 
lip regions, we construct a fxed size window frame that we label 
as the lip region. In Fig.1, we demonstrate the performance ofour 
detection method on a video sequence from our current database. 

Fig. I.  Face and lip detection: The frst image of the video se- 
quence displayed with detected face and lip regions. 

2.2. Extraction of Lip Motion Features 

Optical now vectors computed for each lip frame as described in 
Section 2. I ,  provide the initial information for characterizing lip 
movement. This information has to  be transformed into another 
domain so as to reduce the dimensionality. This process should 
also take into account the problem of invariance w,ith respect to 
rotation, translation and scale. In order to achieve this, we trans- 
form the optical now vectors into a magnitude-direction histogram 
domain. 

Let an optical now vector be denoted by v, = (U;", U,"), 

where v T  and vf stand for the magnitude and the direction angle 
of the vector. For each lip frtme, we perform the following basic 
tasks: A reference direction 8 is f r s t  computed as the magnitude- 
weighted average of  the optical now vector directions: 

where M = E. d" The reference direction 6 can be considered 
as the average irection of the lip movement. The whole range of 
2n degrees for direction angle is divided into p equal sectors each 
denoted by Qk, k = 1, . . . ,p .  The direction v," of each optical now 
vector is re-adjusted with respect to the reference direction # so as 
to give 6," = U," - 8 and the magnitude U;" is accumulated into 
the corresponding angular sector. The normalized kth coeffcient 
W k ,  k = 1: . . . , p :  ofthe lip motion feature vector is then given by 

& 7 :  

where the summation over 0 k  corresponds to accumulation of the 
magnitudes of now vectors with k $  5 6; < ( k  + 1)f. The 
coeffcients wt constitute the lip motion feature vector for frame 
i, that will be denoted by fk: 

f; = [U:, w:, . . . , W k ] .  (3) 

As compared to eigenlip techniques that are often used in the 
literature to fuse lip information to identifcation schemes [9], the 
described optical now based technique is a simple but robust method 
that does not require a very accurate localization of the lip contour. 
Note that the resulting feature vector is translation and scale invari- 
ant. As for the rotation, the representation is invariant to rotation 
along one axis of the face whereas small rotations along the other 
two axes can be tolerated uv to a certain measure. 

2.3. Fusion of Audio and  Lip Motion Features 

Me1 frequency cepstral coeEcients (MFCC) give good discrimina- 
tion of speech data; hence they are widely used to represent audio 
streams in HMM-based speech recognition and speaker identif- 
cation systems. The audio feature vector f: for the k-th frame is 
formed as a collection of MFCCs denoted by c k  along with the 
frst and the second delta MFCCs [Z]: 

ft = [ c k  Ack AAck]. (4) 

The proposed audio-motion fusion scheme is based on the 
early integration model [7] where the integration is performed in 
the feature space to form a composite feature vector of acoustic 
and lip motion features. Classifcation is implemented by using 
these composite vectors. The acoustic features that are chosen to 
be MFCCs and the motion features that are obtained by the optical 
now based technique, as explained in Section 2.2, are combined 
to form the joint audio-motion features. Thus we expect to better 
exploit the temporal correlation of audio-video streams for robust 
performance, especially in the presence of environmental noise. 
The structure of the fusion scheme is outlined in Fig. 2. 

As the audio features are extracted at a rate of 100 f p s  and the 
lip motion features are extracted at a rate of  I5 fps, a rate synchro- 
nization should be performed prior to the data fusion. Let the audio 
and the visual motion features be represented at time instants k& 
and i& seconds, respectively, i.e., 

( 5 )  

(6)  

1 
100 
1 

f," = f,(k-) for ~ = o , I , z ,  ... 

f h  = f ( '  ) for i = O , 1 , 2  ,.... 

The visual motion features can be computed using linear interpo- 
lation over the fk sequence to match the 100 fps rate, 

* % 

- - 1  
f: = f*(k-) = (1 - ok,f:; +akf;+l, (7) 100 

where i' = Lg] and a k  = g - i'. Hence the joint audio- 
motion feature f:,,, is formed by combining the MFCCs, the frst 
Znd second delta MFCCs and the interpolated lip motion features 
fk, for the k-th audio-visual frame: 

(8) k k -k 
fa* = [fa Ll. 
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2.4. HMM-based Recognition 

Hidden Markov Models [ IO]  are reliable structures to model hu- 
man hearing system, and thus they are widely used for speech 
recognition and speaker identifcation problems [Z, IO,  I I]. The 
temporal characterization of an audio-video stream can also suc- 
cessfully be modeled using an HMM structure, where state tran- 
sitions model temporal correlations and Gaussian classifers model 
signal characteristics. In this work a word-level continuous-density 
HMM structure is built for the speaker identifcation task using 
the HTK library [ 121. Each speaker in the database population is 
modeled using a separate HMM and is represented with the fea- 
ture sequence that is extracted over the audio-video stream while 
uttering the secret phrase. First a world HMM model is trained 
over the whole training data of the population. Then using the 
world HMM model as the initial state, each HMM associated to 
a speaker is trained over some repetitions of the audio-video ut- 
terance of the corresponding speaker. In the identifcation process, 
hypothesis testing is performed between the best match of the pop- 
ulation and the world model for the given audio-video utterance of 
an unknown subject. The subject is either rejected or identifed to 
be the speaker with the best match based on a likelihood ratio test. 

2.5. Fusion of Face Texture 

The eigenface technique [3] has proven itself as an effective and 
powerful tool for recognition of still faces. The core idea is to 
reduce the dimensionality of the problem by obtaining a smaller 
set of features than the original dataset of intensities. Every im- 
age is expressed as a linear combination of some basis vectors, 
i.e. eigenimages that best describe the variation of intensities from 
their mean. When a given image is projected onto this lower di- 
mensional eigenspace. a set of r eigenface coeffcients is obtained, 
that gives a parametrization for the distribution of the signal. 

The eigenface coeffcients, when computed for every frame e 
of a given sequence, constitute the face texture feature vector that 
we will denote by f;: 

source 
Modality 

The face images in the training set are used to obtain frs t  the 
eigenspace and thereby an average feature vector to represent the 
world class of faces, that we will denote by ft. Then the likelihood 
ratio to be used in hypothesis testing,of a face image-i with an im- 
age j in the database is given by \If;  - fi Il/llft - ftl/. Note that 
a video sequence of a person contains a number of face images. 
Thus the best match of a test face sequence is determined by using 
a majority rule. The likelihood ratio of this best match provides 
us with a confdence score that can be exploited during the fusion 
process. 

As observed from Fig.2, the proposed overall scheme consists 
of two independent identifcation tasks performed with audio-only 
and fused audio-motion-texture features. For the fnal decision, a 
Bayesian classifer is incorporated to combine the two decisions 
obtained in this way. Bayesian classifer uses likelihood ratios to 
measure the reliability of the two separate identifcation results. 

The fusion o f  audio and motion features is basically a data fu- 
sion p m e s s  and results in a likelihood ratio p.,,, obtained from 
the best match. This ratio can then be combined with the like- 
lihod ratio pt provided separately by the face identifcation pro- 
cess. The overall score of  audio-motion-texture fusion is obtained 
by the weighted average of the two individual likelihood ratios, 

Noise Level (dB SNR) 
clean I 25 I 20 I 15 1 10 I 5 I 0 

Gp,, + (1  - G)pt, where the weight G, 0 5 G 5 1, determines 
the contribution of each modality. Note that for G = 0, the overall 
system turns out to be an audio-texture identifcation scheme. 

6 

DECLFION 

Fig. 2.  Multimodal speaker identifcation scheme 

Table 1. Speaker identifcation results: Equal emor rates at varying 
noise levels. 

The temporal characterization ofthe audio and the audio fused 
with the lip optical now have been obtained using the HTK tool 
version 3.0, where each speaker is represented by a 6-state left-to- 
right HMMstructure. The acquiredvideodataisfntsplitintoseg- 
ments of secret phrase utterances. The visual and audio streams are 
then separated into two parallel streams, where the visual stream 
has gray-level video frames of size 720 x 576 pixels containing 
the frontal view of a speaker’s head at a rate of 15 fps and the au- 
dio stream has 16 kHz sampling rate. The acoustic noise, which 
is added to the speech signal to observe the identifcation perfor- 
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mance under adverse conditions, is picked to be a mixture of of- 
fce and babble noise. The audio stream is processed over I O  msec 
frames centered on 25 msec Hamming window. The MFCC fea- 
ture vector, ck. is formed from 13 cepstral coeffcients including 
the 0th gain coeffcient using 26 me1 frequency bins. The result- 
ing audio feature vector, f of size 39, includes the MFCC vector 
along with the frst and the second delta MFCC vectors. 

Each video stream is at most I second in duration and results in 
I5 individual face and lip frames of sizes 370 x 460 and 120 x 128, 
respectively. The motion feature vectors f L, which are used in 
both training and testing ofthe HMM-basedelassifer, are obtained 
as described in Section 2.2 with p = 20. As for the extraction of 
face feature vectors, an eigenspace of dimension r = 20 is eom- 
puted using 5 pictures from each video sequence of the training 
set. 

The identifcation results are shown in Table 1, where we ob- 
serve the equal error rates at varying levels of acoustic noise. The 
frst two rows display the equal error rates obtained for audio- 
only and audio fused with lip motion (audio-now). The third row 
presents the equal error rate for the texture-only identifcation sys- 
tem that is based on the eigenface method. Finally, the last fve 
rows display the equal error rates obtained aRer the Bayesian deci- 
sion fusion of the audio-only and the audio-motion-texture identi- 
fcation results, with varying values of G. The best equal error rate 
results are obtained when G is 0.75, that is when audio-motion 
and texture-only schemes have 75% and 25% contributions to the 
decision fusion of likelihood ratios, respectively. 

For the texture-only case, we have to point out that all the face 
images used for training have the same background whereas the 
background of the test images varies; this is why the texture-only 
identifcation performance may seem to be worse than expected, as 
observed in Table I .  In the audio-only case the identifcation per- 
formance degrades rapidly with decreasing SNR. However, when 
lip motion is fused with audio, the identifcation performance im- 
proves signifcantly at these low SNR values, due to the correlation 
existing between lip movement and speech. 

decision fusion, especially at high noise levels. Thus the multi- 
modal system seems less sensitive to noise level and the incorpora- 
tion of the Bayesian classifer guarantees the overall performance 
to remain at least as good as the audio-only performance. 

The overall performance is further improved using the Bayesian 

4. CONCLUSIONS 

We have presented a multimodal audio-visual speaker identifca- 
tion system that improves the recognition performance over uni- 
modal schemes. The data fusion of  audio and lip motion informa- 
tion, to train a HMM-based classifer, has availed us with the pos- 
sibility of fully exploiting the correlations existing between two 
modalities. The texture information decoupled from the video 
stream is incorporated via a score-based decision fusion mecha- 
nism to further improve the performance. 

The optical now based technique used for Characterizing lip 
motion appears to be a promising attempt in achieving a robust and 
practical multimodal speaker identifcation system. Such a repre- 
sentation avoids inevitable robustness problems of the systems re- 
lying rather on geometric features that require sophisticated and 
mostly unreliable image analysis tasks, such as segmentation and 
lip tracking. As compared to eigenlip techniques used commonly 
for the fusion of lip motion information, our optical ww based 

’ 

method has attractive invariance properties that increases general- 
ity and robusmess of the identifcation process. 

There are problems and further issues to be addressed. First, 
the training and test database should be enriched both in terms of 
total population and variety for a more reliable performance anal- 
ysis. The variety in database refers mainly to changing environ- 
mental conditions such as lighting and background, and to includ- 
ing video sequences where the head of the speaker may undergo 
arbitrary rigid motion. This would allow us to better measure the 
tolerance of our system to head rotation and changing illumina- 
tion. In this respect, methodologies that would enforce the overall 
scheme for better invariance to such properties has to be explored. 
Secondly, the decision fusion mechanism can be improved, noting 
that there are many other ways of combining information coming 
separately from audio, motion and texture parts of  the video se- 
quence of a speaking person. All these issues and problems are 
currently under investigation. 
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