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ABSTRACT

In this paper, we propose an energy functional to segment objects
whose global shape is a priori known thanks to a statistical model.
Our work aims at extending the variational approach of Chen et
al. [1] by integrating the statistical shape model of Leventon et
al. [2]. The proposed energy functional allows us to capture an
object that exhibits high image gradients and a shape compatible
with the statistical model which best fits the segmented object. The
minimization of the functional provides a system of coupled equa-
tions whose steady-state solution is the solution of the segmen-
tation problem. Results are presented on synthetic and medical
images.

1. INTRODUCTION

In image analysis, the image segmentation problem is a fundamen-
tal issue. Its aim is to find a partition of an image into a finite num-
ber of semantically important regions. From a variational analysis
point of view, two main approaches are considered to perform the
segmentation: the Mumford-Shah approach and the geodesic ac-
tive contours approach [3]. During the last decade, the Geodesic
Active Contours (GACs) method has been employed in many sit-
uations to detect objects such as medical structures. However, in
some situations, the classical GACs are not appropiate. In partic-
ular, even though the GACs model is powerful enough to segment
all kind of objects lying in images, it fails to segment an object
whose shape is a priori known.
Some authors have proposed to incorporate prior shape knowledge
into the GACs. Leventon, Grimson and Faugeras [2] have devel-
oped GACs employing a statistical shape model defined by a Prin-
cipal Component Analysis (PCA) over the Signed Distance Func-
tions (SDFs) of training shapes of the object to be segmented. In
their approach, the active surface, which is represented by a level
set function, evolves locally, based on image gradients and curva-
ture and globally towards the maximum a posteriori position and
shape of the object. In [1], Chen et al. have defined an energy
functional which is minimized when the GACs have captured high
image gradients and a shape prior of the object to be segmented.
The shape prior is computed by averaging a training set of rigidly
registered curves. Other authors have proposed models to integrate
prior shape knowledge into the GACs model [4, 5, 6]. In this paper,
we propose to extend the Chen et al.’s approach [1] by integrating
the statistical model of shape proposed by Leventon et al. [2] in the
energy functional. This functional is minimized when the GACs
have captured high image gradients and a shape belonging to the

statistical model of the object to be segmented.
In Section 2, we propose to briefly review some state of the art re-
sults. In Section 3, we define the new energy functional and derive
the system of equations which minimizes the functional. In section
4, we give information about the numerical implementation of the
proposed segmentation model. Finally, in Section 5, we introduce
the results on 2D synthetic and medical images.

2. STATE OF THE ART

2.1. Geodesic Active Contours and Level Set Representation

The first variational model which detected boundaries in images
was done by Kass et al. [7]. The basic idea of their model is to
locate sharp variations of the image intensity by minimizing an
energy functional. Then, Caselles et al. [3] have proposed a new
intrinsic energy functional J2(C) =

∫ 1

0
g(|∇I(C(p))|)|C ′(p)|dp

where the function g is the edge-stopping function. J2 is a new
length, obtained by weighting the Euclidean element of length
ds by the function g(|∇I(C(p))|) which contains information re-
garding the objects’ boundaries. Caselles et al. have proved in
[3] that the final curve is a geodesic in a Riemannian space. This
geodesic is computed by the calculus of variations providing the
Euler-Lagrange equations of J2 and the gradient descent method
which gives the flow minimizing the functional J2: ∂tC = (κg −
< ∇g,N >)N where N is the unit normal to the curve C and
κ its curvature. Finally, objects in images are found out when the
steady-state solution of the previous equation is achieved.
To deal with changes of topology during the curve evolution, the
level set method proposed by Osher and Sethian [8] is essential.
The main idea is to embed the curve C as the zero level set of a
higher dimensional function φ : R+ × Ω → R. Then, a curve’s
evolution ∂tC = FN can be re-written in a level set formulation:
∂tφ = F |∇φ|. The evolution of the curve C coincides with the
motion of the zero level set of the function φ.

2.2. Statistical Shape Model

In order to model a geometric shape and incorporate it into a GACs’
framework, we think that the shape model of Leventon et al. [2] is
quite suitable. Indeed, first of all, it is basically a level set-based
model since it is built from a set of level set functions. Secondly,
the shape model is computed by the PCA on the SDFs of curves
which provide a stronger tolerance than the parametric curves to
slight misalignments during the alignment process of the training



data since the values of neighboring pixels are highly correlated in
SDFs. From a geometric point of view, the PCA analysis deter-
mines the best orthonormal basis {e1...em} of Rm to represent a
set of n points {φ1...φn} in the sense of the least squares fitting. In
our work, a SDF φj is represented by N q samples (q is the number
of dimensions and N the number of samples for each dimension),
hence the space E is RNq

. In the PCA, a point φj is represented
by the formula: φj = φ +

∑m

i=1 αjiei + Rj = φ̂j + Rj where φ
is the geometric average of {φj}j and Rj is the distance between
the point φj and φ̂j , the orthogonal projection of the vector φj into
the space spans by the basis {ei}i.
The PCA aims at finding out the vectors {ei}i which minimize
the quadratic error ε =

∑n

j=1 ‖Rj‖
2 under the constraint that

these vectors form an orthonormal basis in Rm . These vectors are
given by the eigenvectors of the covariance matrix Σ = 1

n
MM>

where M is a matrix whose column vectors are the n centered
training SDF φj . The vectors {ei}i correspond to the principal
variation directions of the set of n points. They are the principal
components. Moreover, the first p principal axes define a reduced
p-dimensional vector space in Rm equivalent to an hyperplan min-
imizing the sum of squared distances between this hyperplan and
the set of n points. It is important to note that the fitting good-
ness of this p-D hyperplan in relation to the set of points can be
measured in percentage by the formula β =

∑p

k=1 λk/
∑n

k=1 λk

where λk are the eigenvalues of Σ. It is possible to arbitrarly fix
the fitting percentage β and represent the data in a sub-vector space
of dimension p. In practice, the importance of principal modes of a
training set strongly decreases because the training data represent
the same class of objects. Thus, only a small number of eigen-
modes is useful for our purpose. These p principal components
are sorted in a matrix Wp. Thus, the projected data φ̂ in the p-D
space of a data φ in Rm is given by the following equations:

{

φ̂ = Wpxpca + φ,

xpca = W
>

p (φ − φ).
(1)

where xpca is the vector of eigencoefficients.

3. NEW FUNCTIONAL FOR IMAGE SEGMENTATION

3.1. Variational Formulation of the Segmentation Model

In this section, we formulate a new energy functional which is
minimized once the GACs have captured high image gradients and
formed a shape compatible with the statistical model of the object
to be segmented. Our approach aims at extending the work of Chen
et al. [1] by integrating the statistical shape model of Leventon et
al. [2]. We propose the following energy functional:

F (C,xT ,xpca) =

∫ 1

0

{ge(|∇I(C(p))|)+

β φ̂2(gxT
(C(p)),xpca)}|C ′(p)|dp, (2)

where ge is a decreasing function vanishing at infinity, φ̂ is a shape
function provided by the PCA (1) over the training SDFs of the ob-
ject to be segmented, xpca is the vector of PCA eigencoefficients,
gxT

is an element of a group of transformations and xT is the vec-
tor of parameters. We note that xpca is independent of the spatial
position of the shape function but the mean value φ and the matrix
of the first p principal components Wp depend on the spatial lo-
cation.

As in [1], we consider the rigid transformations (but the affine
transformations can also be employed):

gxT
: R2 → R2

x → g(µ,θ,T )(x) = µRθx + T, (3)

where the vector of rigid transformations xT is composed of a
scale parameter µ, an angle of rotation θ and a vector of transla-
tions T .
We think that this new variational approach can segment an object
in images whose global geometric shape is a priori known. Indeed,
the first term of the functional

∫ 1

0
ge|C

′|dp is the GACs classical
functional which detects boundaries with the edge-stopping func-
tion ge. The second term of the functional

∫ 1

0
φ̂2|C′|dp evaluates

the similarity of the shape of the contour C to that of the zero
level set of φ̂(xT ,xpca). Finally, β is an arbitrary positive con-
stant that balances the contributions of the boundary term and the
shape term.
In the next section, we derive the set of coupled equations that
minimize the functional (2) in the parametric (Lagrangian) and the
implicit (Eulerian) formulations.

3.2. Lagrangian and Eulerian Active Contours

The energy functional (2) is minimized when the steady-state solu-
tion to a system of coupled equations are achieved. If the integrant
of (2) is called f , the flow minimizing the functional F w.r.t. the
curve C is the classical flow:

{

∂tC(t, p) = (fκ− < ∇f,N >)N ,
C(0, p) = C0(p).

(4)

Then, the flows minimizing the functional F w.r.t. the vector of
rigid transformations xT are:

{

∂txT (t) = −2β
∫ 1

0
φ̂ < ∇φ̂,∇xT

gxT
> |C ′|dp,

xT (0) = xT 0,
(5)

with ∇xT
gxT

(C) =







∂gxT

∂µ
(C) = RθC

∂gxT

∂θ
(C) = µ∂θRθC

∂gxT

∂T
(C) = 1






. (6)

The flows minimizing the functional F w.r.t. the vector of eigen-
coefficients xpca are:

{

∂txpca(t) = −2β
∫ 1

0
φ̂∇xpca φ̂ |C′|dp,

xpca(0) = xpca0,
(7)

with ∇xpca φ̂ =







e
1
pca

...
e

p
pca






(8)

and e
i
pca the ith principal components of the PCA model.

The steady-state solution of the system of equations (4), (5) and
(7) provide the solution of the segmentation problem.
As we said in Section 2.1, the level set representation is essential
to solve problems of interface propagation. In our work, we use
the variational level set approach as presented in [9]. The level set
formulations of the functional F and the system of equations (4),
(5) and (7) are:

F (φ,xT ,xpca) =

∫

Ω

{ge(|∇I(x)|)+

β φ̂2(gxT
(x),xpca)}δ(φ)|∇φ|dΩ, (9)



{

∂tφ(t, x) = (fκ|∇φ|− < ∇f,∇φ >)δ(φ),
φ(t = 0) = φ0(C0),

(10)

where φ0(C0) is the SDF of the initial active contour C0.

{

∂txT (t) = −2β
∫

Ω
φ̂ < ∇φ̂,∇xT

gxT
> δ(φ)|∇φ|dΩ,

xT (0) = xT 0,
(11)

with ∇xT
gxT

(x) =







∂gxT

∂µ
(x) = Rθx

∂gxT

∂θ
(x) = µ∂θRθx

∂gxT

∂T
(x) = 1






. (12)

And for i ∈ [1, p]:

{

∂tx
i
pca(t) = −2β

∫

Ω
φ̂e

i
pcaδ(φ)|∇φ|dΩ,

x
i
pca(0) = x

i
pca0

,
(13)

4. IMPLEMENTATION ISSUES

Concerning the PCA model, we have aligned the training curves
with the similarity measure of shapes given in [1]. We have used
a fast algorithm [10] to compute the SDFs of the aligned training
curves. Then, we have employed the C-code given by Numerical
Recipies [11] to perform the singular values decomposition on the
matrix Σ

dual = 1
n
M>M to extract the eigenvalues e

d,i
pca and the

eigenvectors λd,i
pca. The PCA performed on Σ

dual rather than Σ

gives fast and accurate results and the eigenvectors e
i
pca and the

eigenvalues λi
pca are given by e

i
pca = Me

d,i
pca and λi

pca = λd,i
pca.

Concerning the evolution equations (10), (11) and (13), they are
numerically solved by iterating the following steps until conver-
gence is reached:

1. Computation of φ̂(xT ,xpca) by using (1) and by perform-
ing the rigid transformations (scaling, rotation and translations)
with the polynomial B-splines interpolation method proposed by
Unser [12]. With this technique, we can smoothly interpolate a
function (φ̂ in our case) from connected polynomial functions of a
given degree (a degree 3 in our program).

2. Discretization of the hyperbolic terms |∇φ| and < ∇f,∇φ >
with the Engquist-Osher or the Godunov numerical flux function.
Computations of the curvature and other spatial depending terms
use standard central difference schemes. We have approximated
the Dirac function δ(φ) by a slightly regularized version as in [9].

3. Calculations of the left-hand side of (10), (11) and (13) are
done with a forward difference approximation.

4. Redistancing the level set function every five iterations with
the fast marching method of Adalsteinsson and Sethian [13].

5. EXPERIMENTAL RESULTS

5.1. Synthetic Images

We have tested our model in 2D synthetic images with a training
set of ellipses. We have generated a set of 20 ellipses by changing
the size of a principal axis with a Gaussian PDF. Then, we have
applied the PCA on the training SDFs of ellipses and we have ob-
tained one principal component that fits at 98.9% the set of 20
SDFs of ellipses. Figure 1 shows the shape functions φ̂ and the
zero level sets corresponding to the mean and the eigenmode of
variation of ellipses. In the first experiment on Figure 2, we have
segmented an ellipse which is partially occluded by a vertical bar.

(a) −1λ1 (b) Mean (c) 1λ1

Fig. 1. Eigenmode of variation of ellipse SDFs.

(a) (b) (c)

Fig. 2. (a) is an image with a binary ellipse occluded by a bar, the
initial contour (the rectangle) and the initial zero level set of the
shape model (the circle). (b) is the final active contour. (c) is the
final zero level set of the shape model.

We can see that the active contour has captured high image gradi-
ents and a shape belonging to the statistical model which best fits
the ellipse in the image. In the second experiment on Figure 3, we
have captured an ellipse which is partially cut.

(a) (b) (c)

Fig. 3. (a) is an image with a binary ellipse partially cut, the initial
contour (the rectangle) and the initial zero level set of the shape
model (the circle). (b) is the final active contour. (c) is the final
zero level set of the shape model.

5.2. Medical Images

We have also experimented our model in 2D medical images. We
have used fifteen 2D images of left ventricles to build our statisti-
cal shape model. These fifteen 2D images are extracted from sev-
eral slices of four T1-MRI images of healthy voluntaries. We have
applied the PCA and we have obtained two principal components
that fit at 88.2% the set of 15 SDFs of ventricles. Figure 4 shows
the level set functions and the zero level sets corresponding to the
mean and both eigenmodes of variation of the ventricle training
set. The segmentation is presented on figure 5. We observe on
Figure 5(c) that the active contour has well captured the left ven-
tricle whereas the initial contour was around the two ventricles on
Figure 5(a). This segmentation result could not be obtained with-
out a shape prior with the same initial contour. The segmentation



(a) -2.5λ1 (b) Mean (c) 2.5λ1

(d) -2.5λ2 (e) Mean (f) 2.5λ2

Fig. 4. Both eigenmodes of variation of left ventricles.

model has also provided on Figure 5(f) the shape of the statistical
model which best fits the ventricle lying in the image.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new variational model to solve
the segmentation problem of an object whose global shape is a pri-
ori known through a statistical model. We saw that the active con-
tours, which result to the minimization of the energy functional (2)
is able to capture high image gradients and a shape of the statistical
model which best fits the segmented object. Thus, this model si-
multenously takes into account local and global information in the
segmentation process. This segmentation model can also be inter-
preted as a registration problem since we register a global shape to
detect an object in the image.
Future works are focused on testing the model on new structures,
performing the method on 3D images and using the affine trans-
formations.
However, even if the model is less sensitive w.r.t. the initial con-
dition thanks to the shape information, the initial condition has to
be satisfactory to avoid bad local minima. Finally, the proposed
model can capture only one object, which is limited since we lose
the powerful property of the level set approach which can segment
several objects simultaneously.
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