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ABSTRACT
We present a new approach for the design of optimal steer-
able 2-D templates for feature detection. As opposed to
classical schemes where the optimal 1-D template is derived
and extended to 2-D, we directly obtain the 2-D template.
We choose the template from a class of steerable functions
based on the analytic optimization of a Canny-like crite-
rion. Our approach gives more orientation selective tem-
plates that have simple closed form expression. We illus-
trate the method with the design of operators for edge and
ridge detection and demonstrate their performance improve-
ment in practical applications.

1. INTRODUCTION

In his seminal paper on computational edge detection, Canny
proposed an approach to derive optimal operators for the
detection of image features [1]. His results on optimal edge
detection, in particular, had a great impact on the field and
stimulated further developments using different optimality
criteria and design strategies [1–3]. All these authors con-
sidered the derivation of 1-D operators and extended the de-
tectors to 2-D by applying the optimal 1-D operator in the
direction orthogonal to the feature boundary while smooth-
ing in the perpendicular direction (along the boundary). As
the optimal 1-D templates did not have explicit formulae,
they were typically approximated by simple first or second
order differentials of a Gaussian that could be applied in-
expensively in a directional manner via the computation of
smoothed image gradients or Hessians.

An alternative to these differential approaches to rotation-
independant feature detection is provided by the elegant work
of Freeman and Adelson on steerable filters [6]. The un-
derlying principle there is to generate the rotated version
of a filter from a suitable linear combination of basis fil-
ters; this sets some angular bandlimiting constraints on the
class of admissible filters. Perona and Simoncelli used this
framework to approximate/design orientation-selective fea-
ture templates [4, 5]. In this paper, we are proposing to
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reconcile the two methodologies—computational approach
and steerable filterbanks—by presenting a general strategy
for the design of 2-D steerable feature detectors. Our fil-
ter optimization is in 2-D as opposed to 1-D as was the
case with the computational approaches of Canny and oth-
ers. Moreover, in contrast with the work of Perona, we do
not approximate a given template within a steerable solution
space, but we search for the filter that gives the best response
according to an optimality criterion. The latter is specified
to provide the best compromize in terms of signal-to-noise
ratio, false detections and localization.

2. FEATURE DETECTION

2.1. Rotating matched filtering

Suppose our task is to detect some feature in an imagef (x)
at some unknown position and orientation. The detection
procedure can be formulated as a rotated matched filter-
ing; it involves the computation of inner-products with the
shifted and rotated versions of a 2-D feature templateh (−x)
at every point in the image. A high magnitude of the inner-
product indicates the presence of the feature; the angle of
the corresponding template gives the orientation. Mathe-
matically, the estimation algorithm is

θ∗ (x) = arg max
θ

(f (x) ∗ h (Rθ x)) (1)

r∗ (x) = f (x) ∗ h (Rθ∗ x) , (2)

wherer∗ is the magnitude of the feature andθ∗ its orienta-
tion at the positionx = (x, y); Rθ is the rotation matrix.
This algorithm is optimal in the maximum likelihood sense
(for additive white Gaussian noise model) but it is not very
practical for it requires the implementation of a large num-
ber of filters.

2.2. Steerable filters

To cut down on the computational load, we select our detec-
tor within the class of steerable filters defined by Freeman
et. al [6]. These filters can be rotated very efficiently by
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Fig. 1. Edge Detectors for different parameters (a) Canny’s
detector (b)M = 3; µ = 0.09 (c) M=5; µ = 0.15

taking a suitable linear combination of a small number of
filters. Specifically, we consider templates of the form

h (x, y) =
M∑

k=1

k∑
i=0

αk,i gk,i (x, y) , (3)

wheregk,i (x, y) = ∂k−i

∂xk−i
∂i

∂yi g (x, y) andg (x, y) is an ar-
bitrary isotropic window function. We can prove that such
an M th order filter is steerable. This means that the con-
volution of a signalf (x, y) with any rotated version of
h (x, y) can be evaluated as

f (x) ∗ h (Rθx) =
M∑

k=1

k∑
i=0

bk,i (θ) fk,i (x) , (4)

wherefk,i = f ∗ gk,i and where the weightsbk,i (θ) are
polynomials of degreeM in cos (θ) andsin (θ). Since the
number of partial differentials in (4) for a generalM th or-
der template isL = M (M + 3) /2, h (x, y) is steerable in
terms of as many individual functions.

Interestingly, wheng (x) is a Gaussian, the family is
equivalent to the class of moment filters discussed in [6],
but the filters are not identical.

3. DESIGN OF STEERABLE FILTERS

The widely-used contour extraction algorithm [1] has three
steps: (a) feature detection, (b) non-maximum suppression,
and, (c) thresholding. We now present a general strategy for
the design of steerable filters for feature detection, keeping
in mind the subsequent steps. We propose a criterion simi-
lar to that of Canny and we analytically derive the optimal
filter— or equivalently the optimal weights in (3)—for that
particular class of steerable functions.

3.1. Optimality Criterion

We now review Canny’s criterion and modify it slightly to
enable analytical optimization. To derive the optimal 2-D
operator, we assume that the feature (edge/ridge) is oriented
in some direction and derive an optimal operator for its de-
tection. As the operator is rotation-steerable by construc-
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Fig. 2. (a) Noisy Image (b) Classical gradient-based detec-
tor (Canny) (c)M = 3; µ = 0.09 (d) M = 5; µ = 0.15

tion, its optimality properties will be independent of the fea-
ture orientation. The 3 different terms in Canny’s criterion
are as follows:

3.1.1. Signal-to-Noise Ratio

The response of a filterh (x) to a particular signalf0 (x)
(eg. idealized edge) centered at the origin is given by

S =
∫
R2

f0 (x, y) h (−x,−y) dx dy (5)

If the input is corrupted by additive white noise of unit vari-
ance, then the variance of the noise at the output is given by
the energy of the filter:

Noise =
∫
R2

|h (x, y)|2 dx dy (6)

We desire to have a largeS for a given value ofNoise.

3.1.2. Localization

Since the estimated feature position corresponds to the lo-
cation of the local maximum of the response, the presence
of noise can cause an undesirable shift in the estimated fea-
ture location. To reduce this shift, we maximize the second
derivative of the response, orthogonal to the boundary, at
the origin

Loc = −
∫
R2

f0 (x, y) hyy (−x,−y) dx dy



A high second derivative of the response implies a narrow
peak, thus resulting in a low shift-variance.

3.1.3. Elimination of false maximas

In 2-D, we desire that the response be relatively free of false
maximas orthogonal to the feature boundary. The average
distance between the false maximas can be maximized by
penalizing the oscillation term :

Ro =
∫
R2

|hyy (x, y)|2 dx dy (7)

The thresholding step is easier if the response is flat
along the boundary. The oscillation of the response along
the boundary (x axis) can be minimized by penalizing

Rp =
∫
R2

|hxx (x, y)|2 dx dy (8)

These terms will force the filter to be smooth; the response
is less oscillatory leading to fewer false detections.

3.2. Derivation of the optimal detector

We combine the individual terms to obtain a single criterion

C = S · Loc − µ (Ro + Rp)︸ ︷︷ ︸
R

(9)

The filter in the class (3) which maximizes this criterion,
subject to the constraintNoise = 1, is the optimal detector.
The free parameterµ > 0 controls the smoothness of the
filter. To make the solution invariant to the dilation of the
window (by a factorσ), we weigh each of the terms in (9)
with an appropriate power ofσ. For the ease of notation,
we collect the component functions of (3) into a function
vectorg of lengthL; an arbitrary function in the family is
represented in a compact form as

h (x) = aTg (x) (10)

wherea is the vector containing theαi,k ’s in (3). We now
express the terms of the criterion in a matrix form asS =
aTs, Loc = aTq, Noise = aTPa andR = aTRa, where

[s]i = 〈f0 (x) , [g (−x)]i〉L2
(11)

[q]i =
〈
f0 (x) , ([g (−x)]i)yy

〉
L2

(12)

[P]i,j =
〈
[g]i , [g]j

〉
L2

(13)

[R]i,j =
〈

([g]i)yy ,
(
[g]j

)
yy

〉
L2

+
〈
([g]i)xx ,

(
[g]j

)
xx

〉
L2

(14)
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Fig. 3. Ridge Detectors for different parameters (a)M =
2;µ = 2, (b) M = 2;µ = 0, (c) M = 4;µ = 0.25

Thus, (9) can be expressed in the matrix form as

C = aT [Q − µR]a, (15)

whereQ = s qT. Since all the terms are quadratic, the
optimal parameters can be found analytically by using La-
grange’s multiplier method. Maximizing (15) subject to the
constraint, we get

2 [Q − µR + λ P]a = 0

Rearranging the terms and using the fact thatP is invertible,
we get

P−1 [Q − µR] a = −λ a (16)

which implies thatλ is an eigenvalue of the matrix−P−1[Q−
µR]. The correspondingL eigenvectorsaλi

need to be
scaled so that the constraintaT

λi
Paλi = 1 is satisfied. The

optimal solution is therefore given by

a = max
{
aT

λi
[Q − µR]aλi

; i = 0...L
}

(17)

3.3. Feature detection by local optimization

The optimal angleθ∗ in (1) is obtained as the solution of
∂
∂θ (f (x) ∗ h (Rθ∗x)) = 0. Using (4), we get

M∑
k=1

k∑
i=0

fk,i (x, y)
∂

∂θ
(bk,i (θ)) |θ=θ∗︸ ︷︷ ︸

ck,i(θ∗)

= 0 (18)

(18) is a polynomial of orderM (in cos (θ) andsin (θ)). If
h (x, y) has only odd/even order partial derivatives, (18) can
be simplified to a polynomial in only one variable—tan (θ);
we have an analytic solution whenM <= 3; otherwise it is
obtained using iterative refinement of an initial approximate
solution from a lower order detector.

4. EXAMPLES & APPLICATIONS

We now design operators optimized for the detection of dif-
ferent 2-D features. We chose the window function to be a
Gaussiang (x;σ), whereσ is the standard deviation.



4.1. Edge Detection

As model for the edge, we choose the Heaviside step func-
tion; ie. f0 (x, y) = U (y). Since it is an odd function of
y, the even order derivatives do not contribute to the signal
energy; we therefore ignore them in (3). WhenM = 1,
we find that the optimal template is equivalent to the well
known Canny’s edge detector. For higherM , we obtain
a family of solutions that are increasingly smooth whenµ
goes up. The impulse responses of some optimal templates
are shown in Fig. 1. The higher order templates are more
elongated thus having higherSNR and Localization . We
have an analytic solution for for the optimal angle in (1) or
(18) whenM = 1 andM = 3. ForM > 3, we refine the
M = 3 solution using a golden search.

To illustrate the algorithm, we perform edge detection
on the cameraman image corrupted with additive white noise
(c.f. Fig. 2-a). The size of the Gaussian window is the
same in all the experiments. The detected edges after non-
maximum suppression and thresholding are presented in Fig.
2. The Canny’s edge detector gives a lot of false detections
and wiggly contours. The new detectors have significantly
lower false detections and better localization, thus confirm-
ing the theoretical improvement.

4.2. Ridge Detection

We chose the idealized line model asf0 (x, y) = δ (y),
whereδ denotes the Dirac’s delta function. HereQ, P and
R are inversely proportional toσ4, σ2 andσ6, respectively.
Hence, we scaleQ by σ2 andR by σ4.

Some examples of optimal templates are shown in Fig.
3. Interestingly, the template Fig. 3-b is more directional
than the classical one in Fig. 3-a (2nd derivative of a Gaus-
sian) which has the same computational complexity. For
M = 2, the optimal direction and ridge magnitude can
be computed with the eigen-decomposition ofHmod. For
fourth order detectors, we initially compute theM = 2 so-
lution and refine the criterion around the current solution.

An interesting application is the detection of DNA fil-
aments (cf Fig. 4-a) from cryo-electron micrographs. The
micrographs are extremely noisy because they are exposed
to a low electron dose to avoid the degradation of the spec-
imen. The results (Fig. 4-b - 4-d) correspond to the out-
put of ridge detection algorithm followed by non-maximum
suppression and thresholding. Overall, theM = 4 detector
gives the best qualitative results: there are few breaks in the
filament and the detection is less wiggly.

5. CONCLUSIONS

We proposed a general approach to derive optimal 2-D oper-
ators from a family of steerable functions for feature detec-
tion. We proposed an analytical optimization scheme based
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Fig. 4. (a) Electron micrograph of DNA (b) Hessian based
classical detector (c)M = 2;µ = 0 (d) M = 4;µ = 0.15
on a slight modification of Canny’s criterion. We used this
method to derive optimal operator for edge and ridge pro-
files and demonstrated their utility in practical applications;
the results are promising.
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