
SYNCHRONOUS AND ASYNCHRONOUS MULTIPLE OBJECT RATE CONTROL FOR
MPEG-4 VIDEO CODING

Yu Sun, Ishfuq Ahmud, Jiuncong Luo, and Xiuohui Wei

Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, Texas 76019, USA

ABSTRACT

Video scenes containing multiple objects can potentially
achieve higher degree of compression and better visual quality
with individual coding for each object. Not always are video
objects synchronous, implying each object may have a separate
temporal resolution. This paper proposes a rate control
algorithm for multiple video object encoding. Using a novel bit
allocation strategy, the algorithm achieves accurate target hit
rate, provides good visual quality, and decreases buffer
overflowlunderflow. Experimental results for both synchronous
and asynchronous multiple video object encoding demonstrate
that, when compared with the existing rate control scheme
recommended by the MPEG-4 standard, the proposed algorithm
provide bener temporal-spatial tradeoff with more accurate rate
regulation.

1. INTRODUCTION

In object-based videos, a video object (VO) in a scene may be
individually coded and may correspond to an elementary
bitstream that can he individually accessed, manipulated and
transmitted, while the information regarding the inter-object
relationship is sent in a separate stream [I]. The exploitation of
the specific characteristics of each object can improve coding
efficiency, as well as provide additional flexibility and functions
121. Rate control (RC) is crucial to provide an optimum peak
signal-to-noise ratio (PSNR) within the budget of available
transmission hit rate. A few researchers have studied the RC
problem for multiple video objects (MVOs) with different
temporal resolutions. To our knowledge. with the exception of
the work by Nunes and Pereira who presented a scene level RC
algorithm for MVOs encoded at different VOP rates [3], the
other algorithms [4-71 assume that VOs are synchronous,
meaning that all VOs are coded with the same video object
plane (VOP) rate. However, this assumption does not always
hold because several VOs in a scene may have different
temporal resolutions. and thus are asynchronous. Proper
asynchronous RC can provide significant savings in bits in
object-based videos.

In addition, current MEPG-4 RC schemes adopt a similar bit
allocation approach: allocates target bits to a scene for each
encoding time, and then distributes the allocated hits among
several VOs in a scene. This approach works well for
synchronous RC, hut it is not very effective when used in

0-7803-7750-8/03/%17.00 02003 IEEE

asynchronous case for MVOs. The reason is that for each
encoding time instant, the number of objects in a scene keeps
varying along the coding time, and the VOP types of MVOs
may also be different in one coding time instant.

This paper proposes a bit estimation and allwation algorithm
for asynchronous multiple object RC, while treating the
synchronous RC as a special case. The proposed algorithm,
named “SAS” (Synchronous and Asynchronous), considers each
VO as a relatively independent VO, like a single object
encoding case. It divides objects into different “object streams”,
such that each VO is an independent stream along the coding
time. The advantage of this approach is that the asynchronous
RC problem is decomposed into multiple sub-problems, with
each sub-problem regarded as a single-object variable bitrate
control problem. Another advantage is that at the top level, SAS
dynamically distributes the bit budget among multiple object
streams at each encoding time by jointly adjusting visual
qualities of MVOs. At the same time, at the lower level the
algorithm can exploit efficient individual single-object or frame-
level RC schemes to solve each stream’s RC and simplify the
traditional bit allocation method.

The rest of this paper is organized as follows: Section 2
presents the details of the SAS algorithm. Section 3 includes the
experimental results demonstrating the performance of the SAS.
Section 4 concludes the paper with final observations.

2. THE SAS ALGORITHM

Figure 1 presents the basic idea of MVO encoding with different
VOP rates. Here, the Foreground Object, with fast motion has a
higher VOP rate, forming an “object stream,i’ along time I , , tl,
..., f!,, The Background Object2 with slow motion has a lower
rate and forms its own stream. The number of VOPs to he
encoded at each encoding time is different, e.g, there are 2
VOPs need to he encoded at time I , and one at time t2. The
following sub sections describe the principles and foundations
of the algorithm.

2.1. Initial Target Bit Estimation

Bit Ratio Computation for Object Streams: SAS calculates the
average number of hits actually used to encode per VOP, during
the previous coding time period before the current time 1:

2 , = (x A , , L) / n , (k = I - I , ..., t-n,-l),
i

111 - 801

here, A,,* represents the actual bits used to code VOP, at time k.
I-/ is the first previous encoding time for VOP, before I, l-n,-/
is the n,'h previous encoding time, n, represents the number of
VOP, in agiven time period, it equals to the encoding VOP, rate
in our experiments.

Considering different objects have different encoding VOP
rates, SAS computes the previous bit ratio Lj,, for VOP, at time I :

/ ,,., =(I'R, .x,,) X (V R , 'T,,,) I::,
where VR, means the encoding VOP, rate. M, is the number of
objects presenting at time I .

Distribute target bits among multiple
bitstreams by PSNR adjustment

Objects .C / \

Background
Ohjectl

Foreground
Obiect,

t2 t3 ... tn Encoding
Time

Figure 1 : Asynchronous rate control for multiple VOs

Initial Target Bit Estimation: If VO, appears at the current
time t, then according to its VOP type and L , , , its initial target
number of bits is set lo a weighted average bitcount:

.
where Dj is the number of VOP types for VO,, N#,; is the
remaining number of VOP, with type I , R,,(is the remaining
number of bits at time t. B,, is the weight of VOP, with type /,

fl, is the weight corresponding to the current VOP type, / = 0,

1.2 indicate I-, P- and B-VOP, respectively.
Weight Adjustment among MVOst To avoid large perceptual

quality differences among MVOs, SAS allows adjusting the
weight for each object. The larger the weight for YO,, the more
target bits should be allocated to it. Initially, the weight for each.
object is set to 1 .O. The average PSNR at time I - / is:

a., = E(V,.,-, .Q,.,.L) I;:, xvl,,.t
where, Q ,,,., isthe coding quality of VOP, at time 1-1, V,,,~, is the
number of non-transparent MacroBlocks (MBs) in VOP, at time
1-1, it indicates the size of VOP,. The weight for VOP, at time t
can be adjusted by:

where ris set to 2 in the experiments. This means if Q;,,., is
lower than a-,. W,,, is increased and VOPi would get more bits

during target bit allocation, thus obtain a higher PSNR;
otherwise, W,,, is decreased a little and gets lower PSNR. Then
the normalized weight for VOP, is calculated by:

I,,

,=I

W,,, = W,,,-, x@-,/Q,.,-,Y '

,-.
Object-Level Coding Complexity Analysis: It is important

to analysis each object's coding complexity before allocate bits
lo the object. We adopt our coding complexity measure ([7]) as:

where C,,, is the coding complexity of VOPi at time I, Pmj is the
luminance value of the pixel j in the mfh MB (ME,) of amotion-
compensated residual VOP,, is the arithmetic average pixel
value of ME,. n, is the number of non-transparent pixels in
MBm, k equal to 4 in our experiments. C,,, naturally combines
the object size (V,,,) and average variance of each MB in a VOP,
and thus, can reflect the instantaneous characteristics of this
VOP (71. The normalized coding complexity of I,'OP, at time 1
can be obtained by:

C,',, = w:, .c,,,
Target Bits Adjustment: Considering l'OP,'s coding

complexity and its average complexity C,,, of previous n, time

instants for VOP, before time I , its target bits budget is then

(2)
estimated by:

The number of target bits is estimated only for P- and B-VOP.
We do not estimate target bits for I-VOP, QP of I-VOP can be
obtained using our method in [7]. Equation (2) is determined for
the following reasons: If c,',, is higher than C,, , more bits

should be allocated to VOP, than r.<, and vice versa.
2.2. Buffer Control Strategy
To get more accurate target bit estimation, the initial bit target is
further adjusted based on the buffer fullness. Here, we adopt our
Proportional-Integral-Differential (PlD) buffer control technique
171. SAS adjusts the total target bits T, (the sum of each VOP's
target bits T8,,) allocated to time I . Before adjusting T,, we should
calculate the target bit ratio g#,, for VOP,, obtained by comparing r,, with T,. The PID buffer adjusting factor is computed as:

PIQ = K,. E, + K, . JE, .d t + Kd .dE, I dt

T,, = (C,'., /C,.,)'r,,

with E, =(B3/2-B,,,) /(B,/2) ,
where 8, is the buffer size, E, is the relative error between the
target buffer fullness (BJ2) and the current buffer fullness Bi,,
K,,, K, and Kd are the Proportional, Integral and Differential
control parameters, respectively, and are set empirically to 1.0,
0.05 and 0.9 respectively in the experiments. Then the total
target bits 7; can be further adjusted by:

T, = c x (l + P I D ,) .
The final target bits T,,, for VOP, aRer buffer adjustment can

be obtained by g,,, times T,.

2.3. QP Calculation, Encoding, and Post-Encoding
Once the number of target bits for VOP, is obtained QP for
texture encoding is computed based on the R-D model in VM8
[I], 14-51, Then, the encoder encodes VOP,. ARer encoding, the
encoder updates the R-D model for VO, based on the encoding
results 141. f l , is also updated by: the average number of bits

used in coding previous n-18 I-VOPs or n_B; B-VOP divided by
the average number of bits used in coding previous n-P, P-
VOPs. Considering the tradeoff between keeping the algorithm
stability and rapidly reflecting the influence of V0,'s variations,
we choose the window size (n-/>+ n-Pr+ n-8,) to the number of

111 - 802

VOPs for VO, in one second in the experiments. The number of
bits to he output from the buffer aRer encoding VOP, can be
computed by:

Then, the virtual buffer fullness can be modified by:

To effectively avoid buffer overtlow, the encoder checks the
current buffer fullness before encoding next VOPs: If the buffer
occupancy exceeds 80% of the buffer size, the encoder skips
next VOPs [I]. When VOP skipping happens, the buffer fullness
is updated by:

While ((E,,, + x (A , . , -Bpp, , ,))>8O%.E,)

{

U.

,=,
I/ Skip encoding VOPs at the next coding time I + / ;
F o r (i = / : i < = h ~ , ~ , , , : i + +)
{ Deciding the VOP type I of the skipped VOP,,,;

N,,r-; //Decrease the remaining number of VOP,,, ;
Re-calculate Bppi,,./;
B,,,,, = E.,., - BPP,.,,,;) 1

3. EXPERIMENTAL RESULTS
Our experiments are conducted for synchronous and
asynchronous MVOs. The results are compared with those
achieved using the VM8 RC algorithm suggested by the MPEG-
4 standard [I] when possible. The initial values of fi.o for I-
VOP,, a, for P-VOP, and ,& for E-VOP, are 3.0, 1.0 and 0.5,
respectively. P,,, is fixed to 1.0, pLo and & are dynamically
adjusted during the encoding process. The buffer size 8, is set to
half of tho target rate [I] . According to MPEG-4 core
experiments, the PSNR of a skipped VOP is defined by
considering that a skipped VOP is represented in the decoded
sequence by repeating the last coded VOP of the object 161.

In synchronous MVO RC, MVOs are encoded with the same
VOP rate, 30 VOP/s, the Intra period has been set to the half of
the VOP rate. The performance results are reported in Table 1 ,
indicating that SAS achieves more accurate target bit rates and
the target VOP rate (30 VOP/s) with higher average coding
qualities. Also note that for some cases in Table I, the
difference between the PSNR values for YO, and VO, is much
larger with VM8 as compared to SAS. Thus, SAS minimizes the
difference in quality to a larger extent.

Figure 2 shows PSNR and buffer curves for the SAS and
VM8 algorithm. VM8 RC does not estimate target bits and
calculate QPs for I-VOPs. Thus, VM8’s performance is not
always good for the IPP ... IPP ... sequence, it has quality
fluctuation between inter and intra coded VOPs. In contrast SAS
directly estimates QPs for I-VOPs using our method in 171.
Figure 2(a) and (b) show SAS obtains smoother qualities among
VOPs. In addition, the buffer occupancy curve of SAS in 2(c) is
around the half level of the buffer size with a small variation.

Table 2 shows MVO encoding results with different
encoding VOP rates. By default, the encoding VOP rate of the
object with higher activity is set to 15 VOPls, and that of the
other object with lower activity is I O VOP/s, the Intra period for
each object has been set to its VOP rate. To evaluate the
performance of asynchronous coding, we also give the results of

two VOs encoding at the same VOP rate (I 5 VOP/s) using SAS.
Besides accurate target bit rates have been realized without
VOP skipping, the results in Table 2 also show that
asynchronous coding obtains a better trade-off between spatial
and temporal resolutions. For example, for the News sequence,
YO, is Ballet which has faster movement, while VO, is the
Speakers with slower movement. Asynchronous scheme
encodes VO, with a higher temporal rate than V02, when the
target bitrate is 64Kbps, YO, obtains a higher average PSNR
(34.09 dB) when compared with its PSNR (32.87 dB) in
synchronous condition. Meanwhile, although YO, gets fewer
bits (27.97 Kbps) than its synchronous case (35.63 Kbps), since
it has a slower temporal rate, the average visual quality of VO,
still has 1.00 dB improvement to its PSNR in synchronous case.
These results indicate a better trade-off between spatial and
temporal qualities can be achieved by SAS. This is especially
useful when network bandwidths are very scarce. Figure 3
shows PSNR and buffer curves of Coastguard sequence. Since
VOI and YO2 have different encoding rates and may appear at
different encoding time in asynchronous coding environments,
in addition we adopt single joint buffer for MVO RC, we use
“encoding time” as x-axis instead of “VOP number” in Fig.
3(b). One can see that buffer curve in Fig. 3 (b) are kept around
50% of the buffer size with a small fluctuation, this Indicates
our buffer policy is effective for asynchronous RC.

4. CONCLUSlqN
In this paper, we propose a multiple object rate control scheme
for MPEG-4 video coding. Unlike traditional bit allocation
methods that first perform bit allocation among scenes at
different coding time and then distribute bits among multiple
objects in a scene, the proposed algorithm regards each object as
one relative independent stream along the coding time, and
directly distributes target bits among multiple objects. The
algorithm adopts the most effective and direct factor “coding
qualities” to control bit allocation among “object streams”. The
proposed algorithm works well not only for asynchronous
multiple objects, but also for synchronous objects. Although this
paper only uses the CBR video in the experiments, it is
straightfonvard to apply it to VBR applications as well.

*

5. REFERENCES

[I] MPEG-4 video verification model V8.0, lSO/IEC
lTCI/SC29/WGI I Coding of Moving Pictures and Associated
Audio MPEG97iN1796, July 1997, Stockholm, Sweden
121 P. Nunes and F. Pereira “Rate Control for Scenes with
Multiple Arbitrarily Shaped Video Objects,” in Proceedings of
the Picture Coding Symposium (PCS’97). Berlin, Germany,
Sep. 1997, pp. 303-308.
[3] Paulo Nunes, Fernando Pereira, “Scene Level Rate Control
Algorithm for MPEG-4 Video Coding,” in Visual
Communicafions and lmage Processing. Proc. SPlE 43 I O ,
pp. I94-205,2001.
[4] Hung-Ju Lee, Tihao Chiang, and Ya-Qin Zhang, “Scalable
Rate Control for MPEG-4 Video,” IEEE Trans. On Circuits and
Systems /or Video Technologv, VOL. IO, pp. 878-894, Sep.
2000.

111 - 803

[5] Anthony Vetro, Huifang Sun and Yao Wang. “MPEG-4 Rate
Control for Multiole Video Obiects.” IEEE Trans. On Circuits

IEEE Trans. On Circuifs and Sy.slems for Video Tecknologv.
VOL.9, ~~.1243-1258, Dec. 1999.

I , . . . ~~

[7] Sun Yu and lshfaq Ahmad. “A New Rate Control Algorithm and Sysfemsfor Video Technology VOL. 9, pp. 186-199, Feb.
1999. for MPEG-4 Video Coding,” in Visual Communicafions and
[61 I’ Ronda, Jaureguizar’ and Image Processing, Proc. SPIE 4671, pp. 698-709, San Jose. CA.
Narciso Garcia, “Rate Control and Bit Allocation for MPEG-4,” Jan, 2o02,

0 30 60 90 120 150 0 30 60 90 120 150 0 30 60 90 120 150
VOP Number VOP Number VOP Number

(a) PSNR curves of VOI (b) PSNR curves ofVO2 (c) Buffer Occupancy
Figure 2 News sequence in QCIF, 2 synchronous VOs, 30 VOP/s, 128 Kbps.

32000

$ 16000

50

44

n38

n32

26

m

I 0 4 I
0 30 60 90 120 150 0 2 4 6 8 1 0

VOP Number Encoding Time

(a) PSNR Curves (b) Buffer curves
Figure 3: Coastguard sequence in QCIF, 2 asynchronous VOs. VOI: 15 VOPls, VO2: I O VOP/s. 64 Kbps

111 - 804

