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ABSTRACT 

Video scenes containing multiple objects can potentially 
achieve higher degree of compression and better visual quality 
with individual coding for each object. Not always are video 
objects synchronous, implying each object may have a separate 
temporal resolution. This paper proposes a rate control 
algorithm for multiple video object encoding. Using a novel bit 
allocation strategy, the algorithm achieves accurate target hit 
rate, provides good visual quality, and decreases buffer 
overflowlunderflow. Experimental results for both synchronous 
and asynchronous multiple video object encoding demonstrate 
that, when compared with the existing rate control scheme 
recommended by the MPEG-4 standard, the proposed algorithm 
provide bener temporal-spatial tradeoff with more accurate rate 
regulation. 

1. INTRODUCTION 

In object-based videos, a video object (VO) in a scene may be 
individually coded and may correspond to an elementary 
bitstream that can he individually accessed, manipulated and 
transmitted, while the information regarding the inter-object 
relationship is sent in a separate stream [I]. The exploitation of 
the specific characteristics of each object can improve coding 
efficiency, as well as provide additional flexibility and functions 
121. Rate control (RC) is crucial to provide an optimum peak 
signal-to-noise ratio (PSNR) within the budget of available 
transmission hit rate. A few researchers have studied the RC 
problem for multiple video objects (MVOs) with different 
temporal resolutions. To our knowledge. with the exception of 
the work by Nunes and Pereira who presented a scene level RC 
algorithm for MVOs encoded at different VOP rates [3], the 
other algorithms [4-71 assume that VOs are synchronous, 
meaning that all VOs are coded with the same video object 
plane (VOP) rate. However, this assumption does not always 
hold because several VOs in a scene may have different 
temporal resolutions. and thus are asynchronous. Proper 
asynchronous RC can provide significant savings in bits in 
object-based videos. 

In addition, current MEPG-4 RC schemes adopt a similar bit 
allocation approach: allocates target bits to a scene for each 
encoding time, and then distributes the allocated hits among 
several VOs in a scene. This approach works well for 
synchronous RC, hut it is not very effective when used in 
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asynchronous case for MVOs. The reason is that for each 
encoding time instant, the number of objects in a scene keeps 
varying along the coding time, and the VOP types of MVOs 
may also be different in one coding time instant. 

This paper proposes a bit estimation and allwation algorithm 
for asynchronous multiple object RC, while treating the 
synchronous RC as a special case. The proposed algorithm, 
named “SAS” (Synchronous and Asynchronous), considers each 
VO as a relatively independent VO, like a single object 
encoding case. It divides objects into different “object streams”, 
such that each VO is an independent stream along the coding 
time. The advantage of this approach is that the asynchronous 
RC problem is decomposed into multiple sub-problems, with 
each sub-problem regarded as a single-object variable bitrate 
control problem. Another advantage is that at the top level, SAS 
dynamically distributes the bit budget among multiple object 
streams at each encoding time by jointly adjusting visual 
qualities of MVOs. At the same time, at the lower level the 
algorithm can exploit efficient individual single-object or frame- 
level RC schemes to solve each stream’s RC and simplify the 
traditional bit allocation method. 

The rest of this paper is organized as follows: Section 2 
presents the details of the SAS algorithm. Section 3 includes the 
experimental results demonstrating the performance of the SAS. 
Section 4 concludes the paper with final observations. 

2. THE SAS ALGORITHM 

Figure 1 presents the basic idea of MVO encoding with different 
VOP rates. Here, the Foreground Object, with fast motion has a 
higher VOP rate, forming an “object stream,i’ along time I , ,  tl, 
..., f!,, The Background Object2 with slow motion has a lower 
rate and forms its own stream. The number of VOPs to he 
encoded at each encoding time is different, e.g, there are 2 
VOPs need to he encoded at time I ,  and one at time t2. The 
following sub sections describe the principles and foundations 
of the algorithm. 

2.1. Initial Target Bit Estimation 

Bit Ratio Computation for Object Streams: SAS calculates the 
average number of hits actually used to encode per VOP, during 
the previous coding time period before the current time 1: 

2 ,  = ( x A , , L ) / n ,  ( k = I - I ,  ..., t-n,-l), 
i 
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here, A,,* represents the actual bits used to code VOP, at time k. 
I-/ is the first previous encoding time for VOP, before I, l-n,-/ 
is the n,'h previous encoding time, n, represents the number of 
VOP, in agiven time period, it equals to the encoding VOP, rate 
in our experiments. 

Considering different objects have different encoding VOP 
rates, SAS computes the previous bit ratio Lj,, for VOP, at time I :  

/ ,,., =(I'R, .x,,) X ( V R ,  'T,,,) I::, 
where VR, means the encoding VOP, rate. M, is the number of 
objects presenting at time I .  

Distribute target bits among multiple 
bitstreams by PSNR adjustment 

Objects .C / \ 

Background 
Ohjectl 

Foreground 
Obiect, 

t2 t3 ... tn  Encoding 
Time 

Figure 1 : Asynchronous rate control for multiple VOs 

Initial Target Bit Estimation: If VO, appears at the current 
time t, then according to its VOP type and L , , ,  its initial target 
number of bits is set lo a weighted average bitcount: 

. 
where Dj is the number of VOP types for VO,, N#,; is the 
remaining number of VOP, with type I ,  R,,( is the remaining 
number of bits at time t. B,, is the weight of VOP, with type /, 

fl, is the weight corresponding to the current VOP type, / = 0, 

1.2 indicate I-, P- and B-VOP, respectively. 
Weight Adjustment among MVOst To avoid large perceptual 

quality differences among MVOs, SAS allows adjusting the 
weight for each object. The larger the weight for YO,, the more 
target bits should be allocated to it. Initially, the weight for each. 
object is set to 1 .O. The average PSNR at time I - /  is: 

a., = E(V,.,-,  .Q,.,.L) I;:, xvl,,.t 
where, Q ,,,., isthe coding quality of VOP, at time 1-1, V,,,~, is the 
number of non-transparent MacroBlocks (MBs) in VOP, at time 
1-1, it indicates the size of VOP,. The weight for VOP, at time t 
can be adjusted by: 

where ris set to 2 in the experiments. This means if Q;,,., is 
lower than a-,. W,,, is increased and VOPi would get more bits 

during target bit allocation, thus obtain a higher PSNR; 
otherwise, W,,, is decreased a little and gets lower PSNR. Then 
the normalized weight for VOP, is calculated by: 

I,, 

,=I 

W,,, = W,,,-, x@-,/Q,.,-,Y ' 

,-. 
Object-Level Coding Complexity Analysis: It is important 

to analysis each object's coding complexity before allocate bits 
lo the object. We adopt our coding complexity measure ([7]) as: 

where C,,, is the coding complexity of VOPi at time I, Pmj is the 
luminance value of the pixel j in the mfh MB (ME,) of amotion- 
compensated residual VOP,, is the arithmetic average pixel 
value of ME,. n, is the number of non-transparent pixels in 
MBm, k equal to 4 in our experiments. C,,, naturally combines 
the object size (V,,,) and average variance of each MB in a VOP, 
and thus, can reflect the instantaneous characteristics of this 
VOP (71. The normalized coding complexity of I,'OP, at time 1 
can be obtained by: 

C,',, = w:, .c,,, 
Target Bits Adjustment: Considering l'OP,'s coding 

complexity and its average complexity C,,, of previous n, time 

instants for VOP, before time I ,  its target bits budget is then 

(2) 
estimated by: 

The number of target bits is estimated only for P- and B-VOP. 
We do not estimate target bits for I-VOP, QP of I-VOP can be 
obtained using our method in [7]. Equation (2) is determined for 
the following reasons: If c,',, is higher than C,, , more bits 

should be allocated to VOP, than r.<, and vice versa. 
2.2. Buffer Control Strategy 
To get more accurate target bit estimation, the initial bit target is 
further adjusted based on the buffer fullness. Here, we adopt our 
Proportional-Integral-Differential (PlD) buffer control technique 
171. SAS adjusts the total target bits T, (the sum of each VOP's 
target bits T8,,) allocated to time I .  Before adjusting T,, we should 
calculate the target bit ratio g#,, for VOP,, obtained by comparing r,, with T,. The PID buffer adjusting factor is computed as: 

PIQ = K,. E, + K, . JE, .d t  + Kd .dE, I dt 

T,, = (C,'., /C,.,)'r,, 

with E, =(B3/2-B,,,) /(B,/2) , 
where 8, is the buffer size, E, is the relative error between the 
target buffer fullness (BJ2) and the current buffer fullness Bi,, 
K,,, K, and Kd are the Proportional, Integral and Differential 
control parameters, respectively, and are set empirically to 1.0, 
0.05 and 0.9 respectively in the experiments. Then the total 
target bits 7; can be further adjusted by: 

T, = c x ( l + P I D , ) .  
The final target bits T,,, for VOP, aRer buffer adjustment can 

be obtained by g,,, times T,. 

2.3. QP Calculation, Encoding, and Post-Encoding 
Once the number of target bits for VOP, is obtained QP for 
texture encoding is computed based on the R-D model in VM8 
[I], 14-51, Then, the encoder encodes VOP,. ARer encoding, the 
encoder updates the R-D model for VO, based on the encoding 
results 141. f l ,  is also updated by: the average number of bits 

used in coding previous n-18 I-VOPs or n_B; B-VOP divided by 
the average number of bits used in coding previous n-P, P- 
VOPs. Considering the tradeoff between keeping the algorithm 
stability and rapidly reflecting the influence of V0,'s variations, 
we choose the window size (n-/>+ n-Pr+ n-8,) to the number of 
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VOPs for VO, in one second in the experiments. The number of 
bits to he output from the buffer aRer encoding VOP, can be 
computed by: 

Then, the virtual buffer fullness can be modified by: 

To effectively avoid buffer overtlow, the encoder checks the 
current buffer fullness before encoding next VOPs: If the buffer 
occupancy exceeds 80% of the buffer size, the encoder skips 
next VOPs [I]. When VOP skipping happens, the buffer fullness 
is updated by: 

While ((E,,,  + x ( A , . ,  -Bpp, , , ) )>8O%.E,)  

{ 

U. 

,=, 
I/ Skip encoding VOPs at the next coding time I + / ;  
F o r ( i = / : i < = h ~ , ~ , , , : i + + )  
{ Deciding the VOP type I of the skipped VOP,,,; 

N,,r-; //Decrease the remaining number of VOP,,, ; 
Re-calculate Bppi,,./; 
B,,,,, = E.,., - BPP,.,,,; ) 1 

3. EXPERIMENTAL RESULTS 
Our experiments are conducted for synchronous and 
asynchronous MVOs. The results are compared with those 
achieved using the VM8 RC algorithm suggested by the MPEG- 
4 standard [ I ]  when possible. The initial values of fi.o for I- 
VOP,, a, for P-VOP, and ,& for E-VOP, are 3.0, 1.0 and 0.5, 
respectively. P,,, is fixed to 1.0, pLo and & are dynamically 
adjusted during the encoding process. The buffer size 8, is set to 
half of tho target rate [I] .  According to MPEG-4 core 
experiments, the PSNR of a skipped VOP is defined by 
considering that a skipped VOP is represented in the decoded 
sequence by repeating the last coded VOP of the object 161. 

In synchronous MVO RC, MVOs are encoded with the same 
VOP rate, 30 VOP/s, the Intra period has been set to the half of 
the VOP rate. The performance results are reported in Table 1 ,  
indicating that SAS achieves more accurate target bit rates and 
the target VOP rate (30 VOP/s) with higher average coding 
qualities. Also note that for some cases in Table I,  the 
difference between the PSNR values for YO, and VO, is much 
larger with VM8 as compared to SAS. Thus, SAS minimizes the 
difference in quality to a larger extent. 

Figure 2 shows PSNR and buffer curves for the SAS and 
VM8 algorithm. VM8 RC does not estimate target bits and 
calculate QPs for I-VOPs. Thus, VM8’s performance is not 
always good for the IPP ... IPP ... sequence, it has quality 
fluctuation between inter and intra coded VOPs. In contrast SAS 
directly estimates QPs for I-VOPs using our method in 171. 
Figure 2(a) and (b) show SAS obtains smoother qualities among 
VOPs. In addition, the buffer occupancy curve of SAS in 2(c) is 
around the half level of the buffer size with a small variation. 

Table 2 shows MVO encoding results with different 
encoding VOP rates. By default, the encoding VOP rate of the 
object with higher activity is set to 15 VOPls, and that of the 
other object with lower activity is I O  VOP/s, the Intra period for 
each object has been set to its VOP rate. To evaluate the 
performance of asynchronous coding, we also give the results of 

two VOs encoding at the same VOP rate ( I  5 VOP/s) using SAS. 
Besides accurate target bit rates have been realized without 
VOP skipping, the results in Table 2 also show that 
asynchronous coding obtains a better trade-off between spatial 
and temporal resolutions. For example, for the News sequence, 
YO, is Ballet which has faster movement, while VO, is the 
Speakers with slower movement. Asynchronous scheme 
encodes VO, with a higher temporal rate than V02, when the 
target bitrate is 64Kbps, YO, obtains a higher average PSNR 
(34.09 dB) when compared with its PSNR (32.87 dB) in 
synchronous condition. Meanwhile, although YO, gets fewer 
bits (27.97 Kbps) than its synchronous case (35.63 Kbps), since 
it has a slower temporal rate, the average visual quality of VO, 
still has  1.00 dB improvement to its PSNR in synchronous case. 
These results indicate a better trade-off between spatial and 
temporal qualities can be achieved by SAS. This is especially 
useful when network bandwidths are very scarce. Figure 3 
shows PSNR and buffer curves of Coastguard sequence. Since 
VOI and YO2 have different encoding rates and may appear at 
different encoding time in asynchronous coding environments, 
in addition we adopt single joint buffer for MVO RC, we use 
“encoding time” as x-axis instead of “VOP number” in Fig. 
3(b). One can see that buffer curve in Fig. 3 (b) are kept around 
50% of the buffer size with a small fluctuation, this Indicates 
our buffer policy is effective for asynchronous RC. 

4. CONCLUSlqN 
In this paper, we propose a multiple object rate control scheme 
for MPEG-4 video coding. Unlike traditional bit allocation 
methods that first perform bit allocation among scenes at 
different coding time and then distribute bits among multiple 
objects in a scene, the proposed algorithm regards each object as 
one relative independent stream along the coding time, and 
directly distributes target bits among multiple objects. The 
algorithm adopts the most effective and direct factor “coding 
qualities” to control bit allocation among “object streams”. The 
proposed algorithm works well not only for asynchronous 
multiple objects, but also for synchronous objects. Although this 
paper only uses the CBR video in the experiments, it is 
straightfonvard to apply it to VBR applications as well. 

* 
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Figure 2 News sequence in QCIF, 2 synchronous VOs, 30 VOP/s, 128 Kbps. 
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Figure 3: Coastguard sequence in QCIF, 2 asynchronous VOs. VOI: 15 VOPls, VO2: I O  VOP/s. 64 Kbps 
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