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2004 International Conference on Image Processing (ICIP) 

Visibility of individual packet losses in MPEG-2 
video 

Amy R. Reibman Sandeep Kanumuri 
AT&T Labs - Research Univ. Calif. at San Diego 
amy@research.att.com skauumur@code.ucsd.edu 

Absfroct-The ability of a human to visually detect 
whether a packet has heen lost during the transport of 
compressed video depcnds heavily on the hicatinn of the 
packet loss and the content of the video. In this paper, we 
explore when humans can visually detcct the error caused 
by individual packet losses. Using the results of a subjective 
test hased on 1080 packet losses in 72 minutes of video, we 
design a classifier that uses objective factors extracted from 
the video to predict the visibility of each error. Our classifier 
achieves over 93% accuracy. 

1. INTRODUCTION 

Sincc thc first papers on video transport over networks 
appeared. a long-standing problem has been “What packet 
loss rate (PLR)‘ can viewers accept?’. Target thresholds on 
acceptable PLR have ranged from lo-’ or lower [I], [21 to 
10@ [3], with even higher PLR assumed in recent work. 
Clearly, the choice of the proper threshold is confounded 
by a number of issues. 

Viewer expectations, involvement, and task. For ex- 
ample, viewers may tolerate errors if they can’t get 
that video content any other way hut not if they 
usually receive the same service error-free. 
Environmental viewing conditions. Background 
lighting, monitor characteristics, and viewing dis- 
tance all affect the viewing experience. 
Each loss creates an error with a different visual 
impact. Encoding parameters, decoder concealment, 
video content (moving or still), packet size, bursti- 
ness of losses, and the actual location of the loss; 
these all play fundamental roles in whether a partic- 
ular loss will be visible or invisible to most viewers. 

A number of subjective studies are available regarding 
the perceived impact of packet losses [41, [51, [61, [71. 
The effect of losses depends heavily on the scene content 
and amount of motion [4]. However, to our knowledge, 
all attempts to consider the perceptual impact of packet 
losses have examined the combined impact of multiple 
packet losses. Because not all packet losses create the 
same visual impact, different realizations of video content 
and packet loss may lead to vastly different visual quality. 
Thus, in these studies, many different realizations of both 

’We consider hem only those packets which are still lost after all emor 
control (including FEC. retransmission, etc). Thus, we consider the PLR 
seen specifically by the compressed video decoder. 
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packct loss and video content are ncccssary to reduce the 
variability of the observer responscs. 

In this paper, we take a diflcrcnt approach, hy consid- 
ering the visual impact of each individual packct loss. 
Our eventual goal is to create a network-bascd video 
quality monitor that is real-time, per-stream, and accurate 
enough to answcr thc question: do the spe& packet losses 
affecting this specific video being transported degrade its 
visual quality? 

To accomplish this, we take the following steps. First, 
we conduct a suhjective test in which viewers who arc 
shown MPEG-2 videos with injected packet losses are 
asked to indicate when they see an artifact in the displayed 
video. Data is gathered for a total of I080 individual packet 
losses over 72 minutes of MPEG-2 video. We purposely 
leave open the question of when a viewer will find a given 
frequency of visible packet losses to he objectionable or 
annoying. “Ground truth” regarding packet loss visibility 
is defined by the results of these subjective tests. 

The data gathered from h e  subjective test could he 
correlated with the output of any number of objective 
quality metrics (including [SI, [91, [IO]), to understand 
how these can be used for characterizing packet loss errors. 
However, &cause we are interested in monitoring the video 
quality within the network [ l l ] ,  we would like a metric 
that operates on the compressed bitstream. Most available 
video quality metrics require either video information prior 
to encoding, or a completely decoded hitstream (or both). 

Therefore, our second step is to develop a tree-based 
classifier that labels each possible packet loss as either 
visible or invisible. The classifier uses objective factors 
extracted from the video, including factors that are in- 
dependent of the video content (temporal duration, initial 
spatial extent, and vertical position) and factors that depend 
on the underlying video content (motion and initial error). 
We achieve better than 9370 classification accuracy. 

This paper is  organized as follows. Section I1 gives 
an overview of MPEG-2 packet losses and their impact. 
We also describe objective factors that are relevant in 
predicting packet loss visibility. Section 111 describes our 
suhjective test. In Section IV, we describe our t r e e - b a d  
classifier that predicts the visibility. of each packet loss. 
Section V concludes. 
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11. PACKET LOSS I N  MPEG-2 VIDEO 

MPEG-2 is typically packetized in one of two ways. 
First, video can be segmented and packetized into small 
fixed-size packets (like ATM cells or MPEG-2 Transport 
Stream packets), in which case a single packet loss might 
force the decoder to discard either a slicc or an entire 
frame. Second, a variable-sized packet can contain one or 
more entire slices. In both cases, a packet loss corresponds 
to the loss of one or more slices. 

The initial error caused by a packet loss propagates in 
space and time as a result of the video decoding algorithm. 
The exact error due to packet loss can be completely 
described by (a) the initial error for each macroblock in the 
lost packet, and (b) the macroblock type and (c) motion 
information for subsequently received macrohlocks [ I  I]. 
The latler two control the temporal duration and spatial 
spread of the error. 

,We expect the visihility of a loss to depend on a complex 
interaction of its location, the video encoding parameters, 
and the underlying characteristics of the video signal itsell'. 
For example, the texture and motion of the underlying 
signal may potentially mask the error. To isolate the 
impact of the various parameters, one approach could be to 
inject different error amplitudes against an identical signal 
background, as was done in [I21 for blocky, blurry, and 
noisy artifacts. However, for packet losses, the error itself 
is highly dependent on the underlying signal. Therefore, 
we must take a different approach. 

We have independent control over the location, initial 
spatial extent, and temporal duration of each loss we inject. 
The other factors depend on the signal. Thus, we can 
choose whether to lose a singlc slice, multiple slices, or 
an entire frame, and we can choose the loss to he in a B- 
frame (which would last a single frame) or in a reference 
frame (which would typically last more than one frame). 
In choosing the location of the loss, we should distribute 
the locations vertically within the frame, and we should 
also choose representative samplings from both still and 
active regions of the sequence. 

III. SUBJECTIVE TEST 

We use a single-stimulus test, in which the viewers' 
task was to indicate when they saw an artifact, where an 
artifact was defined simply as's glitch or abnormality. We 
wanted viewers to he immersed in the viewing process 
and not scrutinizing the video for any possible impairment. 
Thus we chose DVD-quality MPEG-2 video2 from travel 
documentaries. Audio was not presented, and the video 
decoder used zero-motion concealment. 

18-minute viewing session, a viewer evaluated a set of 
video with a short break hetween each sequence. Some 
viewers participated in more than one viewing session, 
although never on thc same day. Each set of video (and 
hence each packet loss) was evaluated by 12 viewers. 

Viewers were told that the videos they were watching 
would have impairments caused by packet losses, and that 
when they saw somcthing unexpected in the vidco they 
should respond by pressing the space bar. They were asked 
to keep their finger on the space bar so they would not he 
distracted by that task. The lighting condition was typical 
of an office environment and the viewer was positioned 
approximately six picture heights from the screen. 

.A total of 1080 packet losses were randomly injected in 
these videos such that every non-overlapping Ibur-second 
interval contained one packet loss in the first three seconds. 
Thc one-second guard interval ensured a viewer had suf- 
licient time to respond to each individual error. Inside the 
three-second inlcrval avnilable fbr each loss, we distributed 
the losses such that overall, 30% affected an entire frame, 
IO% affected two adjacent slices, and 60% affected a single 
slicc. Further, we chose to have 30% of the losses to be 
in R-frames (and hence have a temporal duration of one 
frame), and the remaining 70% evenly distributed across 
the available P- and I-frames in the 3-second interval. 
Finally, the video we selected was highly varied, with 
many different motion types and amounts of spatial texture. 
Therefore, we believe our packet losses occur across a 
rcprcsentative set of diverse signal background types. 

We label each of the 1080 packet losses with the 
responses from the 12 vicwers: seen or not seen. Figure 
I shows the histogram of the numhcr of viewers who 
responded to each packet loss. From these responses, 
we define the ground truth regarding the visibility of an 
error. We define an error to be visible if 75% or more 
viewers responded to it. Similarly, an error is invisible 
if 25% or fewer viewers responded to it. The remaining 
errors are indeterminate. Of the 1080 total errors shown 
to viewers, 732 w e n  invisible, 195 were visible, and 153 
were indeterminate. We do not concentrate here on the 
14% of errors that were indeterminate, hut instead focus 
on understanding the 927 visible and invisible errors. 

Iv .  OBJECTIVE FACTORS AND CLASSIFIER 

In this section, we consider objective factors that can 
be extracted from a complete video bitstream. We first 
examine the effect of individual factors on the visibility of 
packet losses as defined by our human viewers, and then 
present several objective classifiers based on these factors. 

We chose twelve 6-minute DVD-quality video se- 
quences, for a combined length of 1 2  minutes. We grouped 
the sequences into 4 sets, each consisting of three of the 
6.minute seauences, mis limited a viewing to 18 

A, Factors affecting visibiliry 
We consider a total of nine objective factors. We 

consider first three content-independent factors: temporal 
minutes so aS not to tire or bore the viewe& During each duration (TMDR), initial spatial extent (SPXNT), and the 

vertical position (or height) of the error (HGT). The values 
of these three factors were chosen for each packet loss 2720 pixels. 480 lines. and 60 ficlds per second. 
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Fig. 1 .  Numhcr or vicwcrs who saw each c m r .  

when we designed the subjective test, as descrihcd ahove. 
They do not depend on the underlying video content, and 
they can be easily computed or extracted from a partially- 
received bitstream using only the information in the video 
headers. 

Overall, the correlation hctwcen TMDR, SPXNT, and 
HGT and the number of viewers who saw each error ‘is 
low: 0.051, 0.29, and -0.13, respctively. Howevcr, some 
trends can he observed. Of those errors with TMDR=l 
(i.e., B-frame errors), only one error is visible and the 
remaining 119 are invisible. Of the full-frame errors, 39% 
are visible, while only 13% of the single- and double-slice 
errors are visible. A higher percentage of losses in the 
bottom third (84.5%) are invisible than those in the top 
(73.3%) or middle third (69.8%). 

Next, we consider content-specific factors that depend 
on the video content at the location of the loss: motion 
and the MSE of the initial error (IMSE). For a particular 
packet loss. these content-specific factors cannot be exactly 
obtained from a bitstream in which the packet is already 
lost; however, they are available from the complete hit- 
stream. We average these content-specific factors across 
all macroblocks initially lost. 

Intuitively, motion plays a key role in the visibility of 
losses. We use an MPEG-2 encoder to compute motion 
vectors for each pair of adjacent frames and summarize 
the motion within a slice by the average motion in both 
the x- and y-directions, denoted by MOTX and MOTY 
respectively. In addition to average motion, we also con- 
sider several other motion-dated variables to predict the 
visibility of packet losses: the variance in M m X  and 
MOTY denoted by VARMX and VARMY. respectively, 
and the energy in the residual after motion compensation, 
RSENGY, for each slice. These additional parameters 
help in determining whether the calculated motion vectors 
represent the underlying scene motion well or not. For 
example, if RSENGY is high, the motion vectors probably 
do not represent the actual scene motion well. Similarly, 
if the motion variance is high, the motion is inconsistent. 
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The initial Mean Square Error of a packet loss, IMSE, 
has a significant impact on the visibility o l  a packet loss. 
For the frame affected by a packet loss, we compute 
the IMSE by evaluating thc per-frame MSE between the 
decoded images using the complete bitstream and thc 
bitstream with loss. Assuming zcro-motion concealment, 
IMSE is easily computed using a decoder that receives the 
entire bitstream (without losses). 

Thc correlation cocflicients hetween MOTX, MOTY, 
and IMSE and the number of viewers who saw an error arc 
0.40, 0.26, and 0.44, respcctively. Not uncxpcctcdly, visible 
crrors arc much morc likcly to have large motion and large 
IMSE than invisible errors. Most errors with small motion 
are invisible to most viewers: only I I out of 330 packet 
losses with both MOTX and MOTY less than 0.5 (half a 
pixel) are visihlc. 

B. Objective Clrissifier.~ 

We comparc four objcctive classifiers that classify each 
packet loss to be visible or invisible to an “average” human 
observer. Each classifier is a decision trcc; the classifier 
traverses a tree where the path at cach node is based on 
a hinary decision using one of the nine factors discussed 
above. During the training of the tree, a node is split to 
minimize the probability of misclassification. 

Two of the classifiers start with a suh-tree, denoted root- 
tree, that is based on our earlier observations regarding the. 
impact of short temporal duration, small motion, and spa- 
tial extent. Root-tree consists of thc following decisions. 
First, all packet losses with temporal duration of one frame 
(TMDRs 1) are classified as invisible. This introduces 
only one misclassification. Second, all packet losses with 
small motion, defined by (MOTXs0.5 & MOTYsO.S), are 
classified as invisible. This results in  1 1  misclassifications. 
At this stage, we have classified 450 of the 927 errors, with 
only 12 misclassifications: Next, we split the tree based on 
the initial spatial extent (SPXNT<15) without making any 
decision. This split is based on the earlier observation that 
sub-frame (single- and double-slice) and full-frame losses 
have different probabilities of being visible and allows 
these two cases to he treated differently. 

At this stage, we apply CART [13], a well known 
statistics tool for tree-structured data analysis, to classify 
the data in each of the two nodes. CART splits the frame- 
loss node using (IMSEs55.947). where losses with smaller 
IMSE are classified as invisible and the rcmaining losses 
are classified as visible. For the slice-loss case, CART 
produces the tree shown in Figure 2. Seven’ of the eight 
available parameters are used in decisions, hut TMDK is 
not used. This is the first classifier we consider. 

We note that. in Figure 2, the initial decision is based 
on IMSE. Because CART uses a greedy algorithm to find 
the best split, we conclude that after partitioning the data 
set using root-tree, the single most important factor at that 
stage for predicting visibility is IMSE. Thus, the second 
classifier we consider uses only root-tree and IMSE. It 



Classifier Misclass. I Accuracy 
R <  I r v  I R <  I rv 

TABLE I 
MISCLASSIFICATIONS A N D  A C C U R A C Y  FOR EACH CLASSIFIER, 

DURING RESUBSTITUTION ( T R A I N I N G )  A N D  CROSS-VALIDATION. 

classifies full-frame errors as dcscrihcd above and classifies 
suh-frame crrors as irrvisible if (IMSESIX.834) and as 
visible othenvise. 

Our third classifier is designed by applying CART to all 
nine factors above. The decision tree for this classificr is 
not shown due to space constraints; however, it contains 
I O  lcrininal nodes, and the initial split is based on IMSE. 

The fourth classilicr is designed using linear regression 
applied to thc one-second MSE for each packct loss. De- 
spite its known shortcomings at accurately characterizing 
video quality, MSE has traditionally been used to evaluate 
thc impact of packet loss, sincc it summarizes the overall 
impact of the packet loss. We measure MSE between the 
decoded vidco without loss and the decodcd video with 
each packet loss, over any one-second interval that contains 
the error. With this classificr, errors with one-second MSE 
smaller than 3.621 are classilied as invisihle. 

C. Classifier Performance 
We use the four classifiers to classify all non- 

indeterminatc packet losses into visible and invisible 
losses. The classifiers are not run on indeterminate losses 
for lack of a ground truth for comparison. The performance 
of the four classifiers is shown in Table I. Entries under 
“RS” correspond to the performance during the resuhstitu- 
tion phase, which classifies the training data. Entries under 
“ C Y  correspond to the cross-validation phase, where the 
data is partitioned into 10 equal partitions and each of the 
I O  partitions is classified using a tree trained using the 
other nine partitions. 

The CART-based classifier that begins with root-tree 
performs hest, achieving over 93% accuracy on the cross- 
validation test set. The classifier obtained using CART 
alone does not perform as well because CART is a greedy 
algorithm; each split is only locally optimal, and may not 
he the hest split for the overall tree. The split on spatial 
extent is such an example, where CART does not see that a 
split on spatial extent is advantageous at the global level. 
Using root-tree plus IMSE achieves over 91% accuracy 
on the cross-validation test set, while using only the one- 
second MSE performs the worst. 

V. CONCLUSIONS 
When evaluating the quality of video in a network, PLR 

alone is insufficient because the impact of losses depends 
heavily on video content. Our study here is a first step 
toward developing accurate perception-based video quality 
monitors within the network. Further work is needed t o  

mat-tree + 9-fxtor CART 
mot-tree + IMSE 
9-factor CART 
I-sec MSE 

Fig. 2. Classifier for SPXNT<30. TMDR> I ,  not-srridl motion. 

incorporate our current classificr into a video quality mon- 
itor that uses only informalion available kom hitstreams 
that already have losses [ I  I ] .  Further work is also necdcd 
to generalize our classifier to other cnvironmmts: non- 
isolated errors, or diffcrcnt compression. algorithms. 

We expect the Visible Packct Loss Rate (VPLR), i.e. the 
rate of losses causing visible errors, will hc more mean- 
ingful than PLR, because a threshold on acceptable VPLK 
is likely to he invariant with scene content. Our classificr 
could hc used to assign to each scene a probability of 
visibility for a random loss. Coupled with an understanding 
of how people tolerate frequent visible errors, this could 
allow better network design for video transport. 
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