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ABSTRACT

Palette reordering is one of the most effective approaches
for improving the compression of color-indexed images. Re-
cently, a theoretically motivated modification of a reorder-
ing technique proposed by Zeng et al. was suggested, based
on an exponential distribution model of the prediction resid-
uals. In this paper, we develop this theoretical analysis fur-
ther, exploiting a broader model based on exponential power
distributions.

1. INTRODUCTION

The compression of color-indexed images is very demand-
ing for most general purpose continuous-tone image cod-
ing techniques. Specialized approaches for coding color-
indexed images do exist (see, for example, [1, 2, 3, 4]).
However, it remains an important topic to ensure that gen-
eral purpose image coding techniques, such as JPEG-LS
[, 6] or lossless JPEG 2000 [7, 8], do produce acceptable
results with this class of images.

Color-indexed images are represented by a matrix of in-
dexes (the index image) and by a color-map or palette. The
indexes in the matrix address positions in the color-map and,
therefore, establish the colors of the corresponding pixels.
For a particular image, the mapping between index values
and colors is not unique. In fact, it can be arbitrarily per-
muted, under the condition that the corresponding index im-
age is changed accordingly.

Palette reordering is a class of preprocessing methods,
having the goal of finding a permutation of the color palette
such that the resulting image of indexes is more suitable for
compression. If the optimal configuration is sought, then
the computational complexity involved can be high. In fact,
the number of possible configurations for a table of M col-
ors corresponds to the number of permutations of M objects,
which equals M!. Therefore, exhaustive search is impracti-
cal for most of the interesting cases, which motivated sev-
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eral sub-optimal, lower complexity, proposals [9, 10, 11, 12,
13, 14, 15, 16, 17].

Recently, a theoretically motivated modification of a re-
ordering method proposed by Zeng et al. [14] was suggested
[17]. By assuming that the first order prediction residuals
are frequently well modeled by an exponential distribution,
a new set of parameters was proposed, leading to important
improvements in the lossless compression of the index im-
ages [17]. In this paper, we develop the theory further, by
broadening the underlying distribution model and by study-
ing, in practice, how appropriate is the exponential distri-
bution that was assumed in [17]. This is done through the
adoption of an exponential power distribution model which,
as a particular case, includes the exponential distribution.

2. ZENG’S METHOD

The palette re-indexing method proposed by Zeng et al. [14]
is based on an one-step look-ahead greedy approach, which
aims at increasing the lossless compression efficiency of
color-indexed images.

The algorithm starts by finding the index that is most
frequently located adjacent to other (different) indexes, and
the index that is most frequently found adjacent to it. This
pair of indexes is the starting base for an ordered set, .5, that
will be constructed, one index at a time, during the operation
of the re-indexing algorithm. We denote by v; the indexes
already assigned to the ordered set (i indicates the position
of the index in the ordered set and, therefore, its distance to
the left end side of the set) and by u those still unassigned.
Therefore, just before starting the iterations, S = {vi,v2},
where v| and v; are the two indexes mentioned above. New
indexes can only be attached to the left or to the right ex-
tremity of the ordered set.

The algorithm then proceeds as follows. For each itera-
tion, compute u;, and ug according to:

uy, = argmax Dy (u), (D
uUgs
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where
=Y o Clu,v), )
ViES
and
ug = argmax Dg(u), 3)
ugs
where
Dr(u) =Y oys—is1 Clu,vy). “)
ViES

The function C(i, j) = C(j,i) denotes the number of occur-
rences (measured in the initial index image) corresponding
to pixels with index i that are spatially adjacent to pixels
with index j. The oy are weights controlling the impact of
the C(u,vi) on Dy (u) and Dg(u) and, originally [14], were
proposed to be given by

1
oy = log, (H—%) .

The new set is given by {ug,vi,...
Dg(ug), or by {vi,...,vs,ur}, otherwise. This iterative
process continues until assigning all indexes. Finally, the
re-indexed image is constructed by applying the mapping
v; — (i— 1) to all image pixels, and changing the color-map
accordingly.

,VM}, if Dp(ug) >

3. GENERALIZED ZENG’S METHOD

In [17], a modification of Zeng’s algorithm was proposed,
relying on an exponential model for the distribution of first
order prediction residuals, and on the assumption that the
entropy of the absolute differences between neighboring pix-
els is a good indicator of the degree of compressibility of an
image. In what follows, we extend the work reported in [17]
in order to accommodate an exponential power distribution
model of the prediction residuals.

According to the greedy strategy of Zeng’s algorithm,
the next index, i, that should integrate S is the one that
implies the largest increase in code length if its choice is
postponed to the next iteration. It is well-known that, for a
memoryless source, the number of bits required to represent
the occurrence of a given symbol s is given by —log, P(s),
where P(s) denotes the probability of occurrence of s.

We start by defining the estimated code length implied
by placing index u on the left end side of §

I(u) ==Y C(u,v;) log, P(i), (5)

ViES

by placing it one position farther away

I (w) ==Y C(u,v;) logy P(i+1), (6)

ViES

by placing it on the right end side of §

Ir(u) ==Y C(u,v) logy P(|S| —i+1), @)

vi€S

and by placing it one position farther away from the right
end side

() ==Y C(u,v;) log, P(|S|—i+2). ®)

ViES

The new index, i, should satisfy

i = argmax Al(u), )
ugs
with
NI A A O A O
Iy (u) —Ig(u), otherwise.

In words, for each candidate index, u, its best position (left
or right) is chosen, i.e., the one that minimizes the code
length. Then, among all those indexes, we pick the one
producing the largest increase in code length if its choice
is postponed to the next iteration.

Now, we can write

P(i)
lZL( )—1(u) Z log, Z o; C(u,vy),
ViES P( + ViES
1D
if the best position for index u is the left end side, or
Sl—i+1)
I¥ (u =Y log, = il Clu,vi) =
= P(|ls|—i+2)
=Y %sj-iv1 Cu 1), (12)
ViES
if the best position is the right end side, where
P(k

oy = log, Plk+1)’

and where P(k) denotes the probability of occurrence of a
difference of k units between two neighboring pixels.
Moreover, we can also write

Ie(w)~11 () = Y, (1og, P(i)~log, P(Is| ~i+1)) Clu,vi) =

ViES
=Y BiC(u,v), (14)
ViES
where P)
Pr = log, POS|—k+ 1)’ 15)

For exponentially power distributed residuals, i.e., con-
sidering

Pk)=A0", 0<0<1, 0<k<M, y>0 (16)
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Eq. (13) reduces to

Ae¥
oy = log21W = (kY_ (k+ 1)“/) log, 6, a7
and (15) to
A6

Finally, we note that the log, 6 term can be eliminated, since
it is a constant factor, although bearing in mind that it is
always negative.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this Section, we provide experimental results showing
the compression gain that can be obtained if an exponen-
tial power model is used, in comparison to the exponen-
tial model (i.e., for y = 1.0). We give compression results
for the same collection of color-indexed images that have
been used in [17]. These are images both from synthetic
and natural origins and of various sizes and number of col-
ors. We provide results not only for a JPEG-LS encoder,
as in [17], but also for a JPEG 2000 lossless encoder. Ta-
ble 1 presents the compression results that have been ob-
tained (both in terms of number of bytes and bits per pixel),
including the size of the color-maps. The best value of y was
determined for each image / encoder pair, and the compres-
sion gain in relation to the exponential distribution (y = 1.0)
is presented.

From the results presented in Table 1, we observe that,
in fact, the exponential model seems to be a reasonable
choice for most of the images. From the 30 test images
included in Table 1, 17 (18 for JPEG 2000) of them had
compression improvements of less than one percent. How-
ever, for some of the images (6 for JPEG-LS and 8 for
JPEG 2000) the lossless compression gain was over 3%.

A somewhat surprising observation is that, for 17 im-
ages, the best value of vy is the same for both encoders, and
for 6 others they differ only by 0.1. This means that, appar-
ently, for most of the images, the same distribution model
is well suited for encoding engines so different as those
of JPEG-LS (prediction-based) and JPEG 2000 (transform-
based). In our opinion, this observation deserves further
study, because it may contribute for establishing links be-
tween these two coding principles.

Finally, although currently it is not very practical to use
the exponential power model for palette reordering (due to
the need of searching for the best y for each image), it may
be so if a low complexity way of guessing it from the image
is found. This is a possibility that we plan to exploit in a
near future.
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JPEG-LS JPEG 2000

Image Colors || mZeng (y=1.0) Proposed Gain || mZeng (y=1.0) Proposed Gain

Size [ bpp Size. [ bpp [ ¥ % Size [ bpp Size. [ bpp [ ¥ %
pc 6 320,479 | 0.745 | 320,479 | 0.745 | 1.0 | 0.0 322,560 | 0.749 | 322,560 | 0.749 | 1.0 | 0.0
books 7 10,458 | 1.469 10,345 | 1453 | 1.3 1.1 11,392 | 1.601 11,392 | 1.601 | 1.0 | 0.0
music 8 1,620 | 1.051 1,620 | 1.051 | 1.0 | 0.0 2,117 | 1.374 2,117 | 1.374 | 1.0 | 0.0
winaw 10 16,569 | 0.450 16,569 | 0450 | 1.0 | 0.0 22,505 | 0.611 22,505 | 0.611 | 1.0 | 0.0
party8 12 5,993 | 0.318 5,959 | 0.316 | 2.3 | 0.6 7,782 | 0.413 7,626 | 0.405 | 2.3 | 2.0
netscape 32 13,405 | 1.752 13,322 | 1.741 | 0.8 | 0.6 18,285 | 2.390 18,215 | 2.381 | 0.1 | 04
sea_dusk 46 3,732 | 0.189 3,732 | 0.189 | 1.0 | 0.0 2,700 | 0.137 2,604 | 0.132 | 04 | 3.6
benjerry 48 3977 | 1.137 3,974 | 1.137 | 1.1 0.1 6,186 | 1.769 6,145 | 1.758 | 0.2 | 0.7
gate 84 19,543 | 2.566 19,489 | 2559 | 09 | 0.3 23,124 | 3.037 23,119 | 3.036 | 0.9 | 0.0
descent 122 22,834 | 2.854 22,7745 | 2.843 | 0.7 | 04 27,395 | 3.424 27,188 | 3.398 | 0.7 | 0.8
sunset 204 88,610 | 2.307 88,126 | 2.294 | 1.2 | 0.6 125,416 | 3.266 | 124,929 | 3.253 | 1.2 | 04
yahoo 229 6,072 | 1.789 5,995 | 1.767 | 0.5 1.3 7,646 | 2.253 7,513 | 2214 | 04 | 1.7
airplane 256 145,657 | 4.445 | 142,963 | 4.362 | 1.8 1.9 155,603 | 4.748 | 152,647 | 4658 | 1.9 | 1.9
anemone 256 211,103 | 4.966 | 204,085 | 4.801 | 1.5 33 241,394 | 5.678 | 233,559 | 5494 | 15 | 3.2
arial 256 280,074 | 6.183 | 280,074 | 6.183 | 1.0 | 0.0 294,979 | 6.512 | 293,722 | 6484 | 0.6 | 04
baboon 256 212,881 | 6.496 | 211,123 | 6.442 | 1.5 | 0.8 219,469 | 6.697 | 218,264 | 6.660 | 1.5 | 0.5
bike3 256 372,720 | 4.154 | 372,720 | 4.154 | 1.0 | 0.0 434,896 | 4.847 | 434,896 | 4.847 | 1.0 | 0.0
boat 256 190,834 | 5.823 | 184,279 | 5.623 | 2.0 | 34 199,142 | 6.077 | 191,779 | 5.852 | 2.0 | 3.7
clegg 256 488,553 | 5.456 | 482,503 | 5.388 | 1.3 1.2 548,572 | 6.126 | 543,946 | 6.074 | 1.3 | 0.8
cwheel 256 172,718 | 2.878 | 171,273 | 2.854 | 0.8 | 0.8 194,616 | 3.243 | 192,291 | 3.204 | 0.8 1.2
fractal 256 282,417 | 5.828 | 273,932 | 5.653 | 1.6 | 3.0 292,557 | 6.038 | 283,206 | 5.845 | 2.2 | 3.2
frymire 256 521,446 | 3.376 | 514,140 | 3.329 | 0.5 1.4 651,322 | 4217 | 629,749 | 4078 | 0.6 | 3.3
ghouse 256 272,465 | 4.541 | 269,666 | 4494 | 1.3 1.0 305,487 | 5.091 | 302,681 | 5.044 | 1.3 | 09
girl 256 172,202 | 5.255 | 170,288 | 5.196 | 1.1 1.1 181,728 | 5.545 | 180,209 | 5499 | 1.2 | 0.8
house 256 39,767 | 4.854 39,447 | 4815 | 1.4 | 0.8 42,106 | 5.139 41,791 | 5.101 | 1.4 | 0.8
lena 256 165,457 | 5.049 | 159,620 | 4.871 | 1.9 | 3.5 178,097 | 5435 | 168,597 | 5.145 | 1.9 | 53
monarch 256 192,548 | 3917 | 192,548 | 3917 | 1.0 | 0.0 222,169 | 4.520 | 222,169 | 4520 | 1.0 | 0.0
peppers 256 164,481 | 5.019 | 155,068 | 4.732 | 1.6 | 5.7 176,898 | 5.398 | 166,909 | 5.093 | 1.7 | 5.6
serrano 256 204,369 | 3.273 | 198,111 | 3.173 | 0.7 | 3.1 269,893 | 4.323 | 260911 | 4.179 | 0.6 | 3.3
tulips 256 198,226 | 4.032 | 198,226 | 4.032 | 1.0 | 0.0 228,854 | 4.656 | 228,755 | 4.654 | 1.8 | 0.0
Average — 3.122 — 3.077 | — 1.4 — 3.521 — 3,460 | — 1.7

Table 1. Lossless compression results, using JPEG-LS and lossless JPEG 2000 encoders, of a number of synthetic and
natural color-indexed images. The “mZeng” values refer to the technique proposed in [17], whereas “Proposed” refers to the
reordering method based on the exponential power distribution model addressed in this paper. “Gain” indicates the percentage
of compression of the “Proposed” in relation to the corresponding “mZeng”. The ¥ columns indicate the best value of this
parameter for each image / encoder pair. All compression values include the size of the color-map.
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A. Spira and D. Malah, “Improved lossless compres-
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