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Abstract

We propose a new model for zooming digital image. This model, driven
by a partial differential equation, will balance between linear zooming on
homogenous zones to anisotropic diffusion near edges. This allows to
combines advantages on linear zoom models and of some non linear ones
while leaving out their drawbacks.

1 Introduction

In this paper, an ideal image is a real function f defined over the plane. That
is, we ignore boundary effects and round-off errors. We also consider only one
channel - (in practice we will treat the red, blue and green channels separately).
The discretization of f at resolution dx X dy is represented mathematically
by convolution with the “Dirac comb”, i.e., the distribution (see, e.g., [13] for
background):
Cowsy = 3 (ks isy)
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where k and [ are integers. The corresponding discrete image is:
v = Ogr’gy.f

A digital zoom in (or just “zoom” in this paper) is a transformation which
takes a discrete image v at some precision dx X dy and produce a discrete image
w which is an approximation to the discretization of the (ideal) image f at some
better precision dz’ x dy’. That is,

w = C(,;z/’(;y/).F

where F' is tentative reconstruction of f using only wv.



1.1 Linear Zoom

A linear zoom is one where this reconstruction is linear and translation-invariant.
Linear zooms are by far the most used and studied zooms due to their simplicity
and efficiency.

For Linear zooms, F' has the form:

F=vxp

for some function ¢ defined on the plane with [ ¢(z,y)dzdy = 1. This rela-
tion simply indicates that linear zoom differs each other by a specific choice of
function ¢:
w = C(5w’75y’)'(v * (P) (1)

Linear zooms have been quite studied [16]. Among the most famous let us
cite the bicubic zoom (or its variant) [10], quadratic zoom [8], b-spline based
zoom [17], the zero-padding corresponding to Shannon theory [15], [1] or ap-
proximation of it such as e.g. [5] or [4]...

To some (rough) extends, all these zooms differs from a choice of function ¢
and as consequence of some “sharpness” consideration.

In [11], it has been considered the preservation of one dimensional structure.
It can be easily seen, that the only linear zoom that fully performs such preser-
vation is the zero-padding [15]. The zero-padding zoom introduces on another
side some ringing effects along boundaries due to the cut-off in frequencies (high
frequencies are set to 0). All others linear zooms introduce non zero values in
high frequencies following a periodicity pattern (see e.g. figure 2).

1.2 Linearly Invertible (linear or non linear) Zoom

When discussing non-linear techniques for zooming images, the field of possible
of non linear zoom is obviously bigger than the linear one. However, an interest-
ing restriction has been introduced in [9]. The authors propose to only consider
non linear zoom whose inverse operation (zoom out to the original image) can
be written as a linear zoom. With such an assumption the zoom operator should
satisfy a similar expression than equation 1, but an expression which is open to
a little more flexibility.

v = Csz,5y(S *w) (2)

Or, in the Fourier domain:

o(m,n) =Y _b(m+kM,n+IN)S(m + kM,n + IN)
k1

In other words, Fourier coefficients of the zoomed image w and original image
v are linked by a linear equation. Zoom methods, satisfying this constraint,
differ in a (linear or non linear) choice of distributing energy for each coefficient
0(m,n) into the coefficients w(m + kM, n+IN). Given an image v and a choice
of inverse zoom function S, the set of image satisfying the equation 2 is a linear
subspace. In the following we will call it W, s.



Among several examples, let us discuss two of such zoom: Using Bayesian
approach Schultz et Stevenson [14] have proposed to choose as v the function
that minimizes the following energy:

min { > i p(D*o(wy, V’“)i’j)}

ij k=1

under the constraint given by equation 2. D?v(vg,v);; is a finite difference
approximation of the seconde derivatives computed in one of the four directions,
p(x) is equal to 22 for |z| < T and extended linearly beyond |z| = T such that
p is smooth and convex. An interesting property of this method lies in the
threshold parameter T" which is used to act differently on smooth regions and
on non-smooth regions. However, due to the second derivative term within the
energy, it is difficult to draw properties of the model. In addition, the energy
is quite difficult to minimize due to instabilities of the PDE derived from the
gradient descent.

In a quite similar idea, Guichard et al. [9] proposed to choose among W, s
the image that has the smallest total variation: E(w) = [ |Dw|. Solutions of the
problem are not unique. However, the authors show that all solutions can be de-
duced from each others by some specific transformations. So that minimization
can be performed easily by a gradient descent from any linearly zoomed version
of the original image to one of the solutions. This zoom shares advantages and
disadvantages of the total variation minimization: as total variation, it allows
discontinuities and therefore strong sharpness and it preserves one dimensional
structures, but it over-smoothes homogeneous regions.

To summarize, these two methods consist in minimizing an energy under
the constraint 2. That is, choosing among possible images W,, 5, the image that
has the smallest energy. As consequence, choosing a zoom method boils down
with such approach to the choice of a good energy - which is somehow one of
the main issue of variational-based image processing.

2 A new zoom method

Somehow we wish to choose, among the linearly invertible zoom, one that ben-
efits the advantages of all the preceding methods. A good zoom should be as
good as linear ones on homogeneous region and as good as e.g. Total variation
based zoom on edges.

2.1 Ouwur model

Let v be the image to expand and ug be an initial reconstruction of v. We have
v = Csg,5y-u0 and we will discuss later a specific choice of reconstruction.

We denote by P the orthogonal projection on to the space W, 5. The zoomed
(d x d times) version of v is the image w = Cs,/4,5,/q-u(-, T), where u(-,T) is



the solution at scale T' (T fixed later) of the following equation:

% — |Du|D?u(&, &) + g(|Dul) D*u(y, n)

—(PU—PU()),

with initial condition given by wo: that is u(0,-) = ug(-), and where £ and 7 are
unit vectors respectively orthogonal and in the direction of the gradient Du of
u(t,-). That is:

¢ = Dut/|Dul, 1 = Du/|Dul.

Terms of the PDE can be interpreted as follow: the first one diffuses u only
in the orthogonal direction of the gradient. The second term diffuses w only in
the direction of the gradient. The last term forces u to stay near the sub-space:
Wy.s. The function g is to be chosen with values between 0 and 1. It somehow
balances the two diffusion terms. When g = 1, the two diffusion terms have
an equal weight and as a consequence the two first term can be combined into
a linear and isotrop diffusion (Ou/0t = Au). When g = 0, only the diffusion
in the orthogonal direction of the gradient opers. A deeper analysis of the two
first terms of the PDE follows in the next subsection.

For the choice of g we use the Malik and Perona edge-stopping function
g(s) = 1/(1 + (s/X)?). In fact one of the first ideas to process separately the
homogenous areas and edges, is coming from Malik and Perona [12] and consists
to evolve the image with the anisotropic diffusion :0u/dt = div (¢(|Du|)Du). In
particular for large magnitude of the gradient the diffusion is stopped and edges
are conserved.

With such choice of function g, assuming ug is continuous, our model has
a unique solution wu(t,-) in the viscosity framework [7]. Complete proof can
be found in [3]. Let us also note that any discretization of the PDE satisfy-
ing asymptotic behavior and monotony is consistent with the equation. This
roughly means that the equation can be numerically solved by classic schemes.

2.2 Major Properties of our Model

Behavior of the PDE is driven by the function g.

On homogeneous zones of u, g will have values near 1. In that case, the
two first terms of the PDE will combined into the laplacian of u, yielding an
isotropic linear diffusion. Since the projection term is a linear term. The equa-
tion performs a linear reconstruction which could be compared to a linear zoom.

On edges, g will have values near 0. In that case, the second term of the
PDE vanishes, leaving the anisotropic diffusion of the first term. This term
is nothing but the mean curvature motion operator (see [2]). It smoothes all
level lines of the evolving image. This will force edges geometry to be smoothed
without any effect on edges sharpness. First term can be also be interpreted as
a 1D diffusion: along the orthogonal direction of the gradient. To some extend
it performs a 1D linear zooming, where the direction of the zoom is locally set
to the tangent of the edges.



In fact here is the main property of the PDE: when the image is homogeneous
it performs a linear zoom and when the image is locally 1D oriented (edge) it
performs a 1D linear zoom...

2.2.1 Choice of diffusion time

Choice of the diffusion time T is linked to the zooming factor d. We wish to
smooth evolving image u until details that are too small to exist in the original
image v disappear. As we have seen, on homogenous zones the PDE behaves
as the heat equation whose solution is the convolution by a gaussian kernel.
Evolving an image uy with the at scale ¢ heat equation is equivalent to compute
the convolution with a gaussian kernel whose mean deviation is v/2t. So that,
for a zoom of factor d, we wish to set this mean deviation to v/2d (diagonal
of an initial pixel expressed in unit of pixels of the zoom image). This simply
yields T = d2.

2.3 Discretization of the PDE

To discretize the PDE, we do not start with ug defined all over the plan, but
with a discrete u¢ having resolution of the zoomed image. Our scheme is the fol-
lowing : We begin with an image ug satisfying Puy = ug, e.g. the interpolation
with duplication (of factor d). We then iterate with the explicit scheme :

un-i- 1_ . n

ij Yii _ p2,n 3 DuN D™ B
= = D’ (€.€)ij + 9(|Du" ) D*u" (. m);g

—P(u" — uO)ij~

Where D?u"(€,€);; and D?u™(n,n);; are computed with 3 x 3 stentil using the
scheme proposed in [6]. The Neumann type boundary is also used. For the
experiments, we choose S being the caracteristic function of a pixel of image v.
So that the reduction term P on the image subspace W, s can be written as

Pula) = YT, @) 02 [ u(y)dy, )

where ); ; is the corresponding square d x d of the expansion of pixel (i, j), Iq,
is its caracteristic function of €; ;.

3 Experiments

Figure 1 illustrates different magnifications of factor 4 of part of the famous
Lenna image. The zoom by duplication a quantization effect appears in the
homogenous areas and ”stair-case” effects are visible. The cubic B-spline in-
terpolation smoothes the expended image and edges . The zoom based on
total variation leaves edges sharp but the homogenous areas tends to become
piecewice constants. Our zoom clearly avoid all of these drawbacks. In Figure



2 we display the modulus of images spectra of figure 1. Remark how well, com-
pare to others, the frequency spectrum is well extrapolated by our model. At
last, Figure 3, we compare our model and b-spline interpolation on a textured
image.
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Figure 1: Part of Lenna image, Up-left : zoomed x4 by duplication, Up-right : by
cubic B-spline interpolation, Down-left : by the minimisation of the total variation of
the image, Down-right : by our model.




Figure 2: Tlustration of modulus of spectra of the images in figure 1. We clearly
see, for the two linear zooms a duplication or a amplitude falloff for high frequencies.
TV based zoom performs an extrapolation preserving main directions. Our model
performs this even further.

4 Conclusion

We have introduced a zooming whose inverse is linear and that benefits ad-
vantages of linear zooms on homogenous areas, and of total variation zooms
on image edges. We observe experimentaly that our method - preserves one
dimensional structures (and therefore avoid stair-case effect), - outperforms lin-
ear zooms as well as total variation based zoom in term of Fourier spectrum
extrapolation, - compares advantageously with classic zooms.

Acknoledgment. The first author would like to thank A. Chambolle for
all fruitful discussions.
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Figure 3: Texture image zoomed x4 Up : by cubic B-spline interpolation, Down : by
our model.
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