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ABSTRACT

In many image or video retrieval systems, the search of sim-
ilar objects in the database includes a spatial access method to
a multidimensional feature space. This step is generally consid-
ered as a problem independent of the features and the similarity
type. The well known multidimensional nearest neighbor search
was also widely studied by the database community as a generic
method. In this paper, we propose a novel strategy dedicated to
pseudo-invariant features retrieval and more specifically applied
to content-based copy identification. The range of a query is com-
puted during the search according to deviation statistics between
original and observed features. Furthermore, this approximate sea-
rch range is directly mapped onto a Hilbert space-filling curve al-
lowing an efficient access to the database. Experimental results
give excellent response times for very large databases both on syn-
thetic and real data. This work is used in a TV monitoring sys-
tem including more than 13000 hours of video in the reference
database.

1. INTRODUCTION

Content-Based Copy Identification(CBCI) schemes are an alter-
native to the watermarking approach for persistent identification
of images and video clips. As opposed to watermarking, the CBCI
approach only uses a content-based comparison between the orig-
inal object and the candidate one [1, 2]. It generally consists in
extracting few small pertinent features (also calledsignaturesor
fingerprints[3]) from the image or the video stream and match-
ing them with aDataBase(DB). As for many content based re-
trieval systems, one of the difficult task is the cost to search sim-
ilar objects in a large DB. To mitigate this problem, many simi-
larity search systems use a spatial access method in a multidimen-
sional space feature. When objects are already vectors (signatures
for example), multidimensional access methods can be used di-
rectly or after dimension reduction techniques, e.g. in [4]. For
other complex similarity metrics, embedding methods [5] allow
the mapping of a given set of objects with a similarity function be-
tween them into a multidimensional embedding space. However
all these methods consider the multidimensional access method in
the feature space as ablack boxreceiving a range query or a k-NN
(Nearest-Neighbors) query. In this paper, we propose a new multi-
dimensional access method dedicated to pseudo-invariant features
retrieval and applied to a CBCI video scheme. Section 2 discusses
the specificities of CBCI and how those can be used to reduce the
response time of a multidimensional access method. In section

3, we present our new database strategy based on statistical range
queries mapped onto Hilbert’s space filling curve. Experiments
are presented in section 4, both with synthetic data and with a real
large DB of local signatures.

2. CBCI SPECIFICITIES AND STATISTICAL BASED
QUERIES

In many content based image retrieval schemes, the retrieval is pro-
cessed by a k-NN query or a range query in the feature space. The
idea is to find the features that are the most similar to a requested
one. This has often been extended to the CBCI problem [6] though
the expected result differs by:(i) a copy is defined by a set of tol-
erated transformations of the original object,(ii) the search only
consists in finding the original signature if the query is a copy of
a referenced object. The difference of query type is fundamental
regarding the search complexity [7] which highly depends on the
spatial range mapped by the query. In a k-NN search, this spa-
tial range depends on the DB size and on the local points density
around the query. In a CBCI scheme, it depends on the distortions
between the original signature and the signature of the copy. For
example, if the signature is quite invariant to some expected trans-
formations, the spatial range of the query can be strongly limited.
In the past few years, the use of approximate NN queries proved
that small losses in quality can be traded for high response time
gains [8]. However, response times are often linear versus the DB
size when increasing amount of data is a major stake for rights
protection systems.

Most spatial access methods in multidimensional feature space
comprise afiltering stepand arefinement step[9, 10]. Therefine-
ment stepis generally the same process which would be used with
a naive sequential scan but it is applied only to parts of the DB
selected by thefiltering step. For CBCI schemes, we propose to
adapt thefiltering stepto the expected distortions with statistical
based queries. For a given query signature, the idea is to predict a
region of the space where the probability to find the enventual ref-
erenced signatures of same object is superior to a fixed threshold
α. Formally, for a given query Y and a user defined probability
α, thefiltering stepconsists in finding the setSα of all signatures
contained in a hyper-volumeVα such as:

∫

Vα

p(X|Y ) dV ≥ α (1)

wherep(X|Y ) is the probability density function thatX andY
are signatures of same object, givenY .



The refinement stepis then processed only onSα. This pro-
cess is commonly a k-NN search, a range search or both. If the
DB contains several copies of some objects (repeat in a TV DB for
example), the k-NN search sets the maximum number of poten-
tial copies and the range search radius sets the decision threshold.
When local signatures are used [2, 6], the final result is a consol-
idation of many partial results. Each partial result contains many
candidate signatures, and possibly the wholeSα. The refinement
stepcould then be only the computation of the distances or of a
probability for each point inSα.

CBCI applications such as copyright protection or broadcast-
ing checking generally do not require an immediate response. Even
for a TV monitoring application, e.g. in [2], the system must be on
average sufficiently fast but the response to a query can be delayed.
This tolerance allows to gather several queries and to avoid many
disk accesses when the DB exceeds primary storage size (see de-
tails in section 3). Finally, insertions or deletions in the DB are not
constantly required; the DB can be only searched duringin-line
run and costlyoff-lineprocesses are affordable.

3. DATABASE STRATEGY

Multidimensional indexing using Hilbert’s space filling curve was
originally suggested by Faloutsos [11] and fully developed by Law-
der [12]. The principle of our retrieval method is quite similar to
Lawder’s one: The query is mapped to Hilbert’s curve coordinate
and it is converted into several curve sections. The refinement step
then consists in scanning the data points belonging to these sec-
tions. Hilbert’s curve clustering property limits the number and
the dispersion (on the whole curve) of these sections reducing the
number of memory accesses. However our method differs in sev-
eral main points. Lawder’s filtering step requires the use of state
diagrams to compute the mapping to Hilbert’s curve which limits
the dimension to about 10 because of primary storage considera-
tions. Furthermore, only hyper-rectangular range queries are com-
putable. Our statistical based filtering step uses Butz algorithm
[13] for the mapping and requires little memory. The DB is physi-
cally ordered according to points position on Hilbert’s curve and it
is locked during the whole in-line search stage. For a given query,
once the curve sections have been identified, the corresponding
sets of successive points in the DB are localized by an index table.
Then the refinement step sequentially scans each set of successive
points.

The DB is stored in a file and is loaded in primary storage
at the beginning of the in-line stage. When the DB exceeds pri-
mary storage size, it is cyclically loaded in several memory size
blocks and several queries are searched together (see subsection
3.2). Subsection 3.1 describes the proposed filtering step where
we assume that theD components of the signature are indepen-
dent:

p(X|Y ) =

D
∏

j=1

p(xj |yj)

3.1. Filtering step

TheK-th order approximation of Hilbert space-filling curve in a

D-dimensional grid spaceHD
K , is a bijective mapping:

[

0, 2K − 1
]D

↔
[

0, 2KD − 1
]

. The main property is that two neighboring in-
tervals on the curve always remain neighboring cells in the grid
space. The reciprocal property is generally not true and the quality

Fig. 1. Space partition for D=2 and K=4 at different depths – from
left to right: p=3,4 and 5

of a space filling curve can be evaluated by its ability to preserve a
certain locality on the curve.

Some intermediate variables of Butz algorithm, allow to easily
define the space partition corresponding to the regular partition of
the curve in2p intervals [14]. Parameterpǫ[1, KD] is called the
depthof the partition (by analogy to KD-trees). Like illustrated
on Figure 1, the space partition is a set of2p hyper-rectangular
blocks (calledp-blocks) of same volume and shape but of different
orientations.

For ap-partitioned space, inequality (1) may be satisfied by
finding a setBα of p-blocks such as:

card(Bα)
∑

i=1

∫

bi

p(X|Y ) dV ≥ α (2)

whereBα = {bi : i ∈ [1, card(Bα)]} and0 ≤ card(Bα) ≤ 2p.

In practice,card(Bα) should be minimum to limit the cost
of the search. We refer to this particular solution asBmin

α whose
computation is not trivial because sorting the2p blocks according
to their probability is not affordable. Nevertheless, it is possible to
identify quickly the set of blocks with a probability greater than a
fixed thresholdt :

B(t) =

{

{bi} :

∫

bi

p(X|Y ) dV > t

}

and the corresponding probability sum :

Psup(t) =

card(B(t))
∑

i=1

∫

bi

p(X|Y ) dV

Sincecard(B(t)) decreases witht, findingBmin
α is equivalent to

finding tmax verifying:
{

Psup(tmax) ≥ α
∀t > tmax, Psup(tmax) < α

(3)

As Psup(t) also decreases witht, tmax can be easily approxi-
mated by a method inspired by Newton-Raphson technique.

Parameterp is of major importance since it directly influences
the response time of our approximate method

T (p) = Tf (p) + Tr(p)

The filtering timeTf (p) is strictly increasing because the computa-
tion time ofBα and the number of memory accesses increase with
p. The refinement timeTr(p) is decreasing because theselectivity
of the filtering step increases, i.ecard(Sα) decreases withp. T (p)
has generally only one minimum atpmin which can be learned at
the beginning of the in-line stage in order to obtain the best mean
response time on several queries.



3.2. Disk strategy

When the DB exceeds memory size, several, sayNsig, signatures
are searched together. At the beginning of the in-line stage, the
Hilbert’s curve is split in2r regular sections (0 ≥ r ≥ p), such
as the most filled section fits in memory. The filtering step is pro-
cessed for each signature during a first stage. Each section is then
sequentially loaded and searched by the refinement step. The mean
total process time per query is given by:

T tot = T + (Tload/Nsig) (4)

whereTload is the loading time for the entire DB. This additional
time introduces a linear component in the response time against
DB size, however it can be neglected in most cases by adjusting
Nsig. In our system,Nsig is automatically set to obtain a constant
mean loading time per query whatever the DB size is (see 4.3).

4. EXPERIMENTS AND RESULTS

Experiments were computed on a Pentium IV (CPU 2.5 GHz, cache
size 512Kb, RAM 1.5 Gb). Response times were obtained with
unixgetrusage() command. For comparison, we implemented
our own version of the sequential scan method, which loads the
entire DB in main memory. When the DB does not fit in mem-
ory, a similar disk strategy than above described is used. Simi-
larly to (4), the mean total process time per signature is given by:
T totsequ = T sequ + Tload/Nsig. Since the loading time is iden-
tical for both methods and can be adjusted as seen previously, it
is not taken into account. The sequential scan and the refinement
step were performed withL2-metric. As signature components are
coded on one byte, all measures refer to the space[0, 255]D and it
was assumed that:

p(xj |yj) = p(xj − yj) , ∀j = 1, D

4.1. Synthetic database

In order to assess the performance of the method as the DB size
grows, we generated signatures DBs of different size containing
random 20-dimensional signatures drawn from the uniform distri-
bution on [0,255]. For each DB, 1000 signatures were randomly
selected, distorted and searched with both the proposed method
and the sequential scan. Each signature component was indepen-
dently corrupted by an additional zero-mean gaussian noise with
arbitrary standard deviationσj = 22.5, ∀j = 1, D. The prob-
ability of the statistical based query was fixed toα = 0.96. The
refinement step process was the same than the sequential scan pro-
cess and was a 5-NN search. Note that, only the time cost of this
step is important. A signature is considered to beretrievedif it is
selected by the filtering step. Based on the different DB sizes, we
obtained the following 95% confidence interval for theretrieval
rate: r = 0.957 ± 0.007, to which expected value0.96 belongs.

Let T sequ andT be the mean response times for the sequen-
tial scan and the proposed method.T sequ is known to be a lin-
ear function of the DB sizeN . Figure 2 shows the response time

gain, defined byG =
T sequ

T
, as a function of the DB size. The

linear behavior ofG in log-log scale, corresponds to a sub-linear
behavior for the response time that we can graphically evaluate to
T = 2.046 10−6 × N0.38 sec. Therefore, the largerN , the more
profitable the proposed method, compared to a linear search as the
sequential scan or most approximate methods are.

Fig. 2. Time gainG versusDB size (log-log scale)

4.2. Real database

The real signatures DB was obtained using the Content Based
Video Copy Identification scheme described in [2]. It contains
434,240,861 20-dimensional signatures whose components are lo-
cal differential descriptors extracted in key images around inter-
est points. This represents 11.04 Gb corresponding to 8042 hours
of (color and black&white) TV video extracts from various pro-
grams: news, sport, shows, movies. Probability density functions
p(xi − yi) were estimated by extracting signatures both in origi-
nal sequences and in distorted ones at the corresponding positions.
We focused on four image distortions: resizing (factor = 0.8),
gamma correction (factor = 0.5), zero-mean gaussian noise ad-
dition (σn = 20.0), and imprecise interest points location (by a 1
pixel shift operation). Thedistorted signatureswere then searched
both with sequential scan and with our method initialized with es-
timated cumulative distribution functions andα = 0.96. Again,
the refinement step was a 5-NN search for both methods. Table
1 reports the observed retrieval ratesr, the time gainsGdist., the
time responsestdist.. In addition, the means of distribution param-
etersµdist. = 1

D

∑D

j=1
µj andσdist. = 1

D

∑D

j=1
σj are given.

Small losses in retrieval (8.3 % in the worst case) allowed us to ob-
tain significantly low response times (< 86 msec.), as compared
to the litterature [6]. Note that the relative error|r−α|

α
(4.5% in

worst case) is due to the underlying model assumptions.

distorsion resize gamma noise shift

r (%) 91.7 94.3 94.6 93.2
Gdist. 327 26509 4532 1090

tdist. (msec.) 85.9 1.06 6.20 25.78
µdist. 0.122 -0.597 0.016 0.546
σdist. 22.084 4.347 10.607 16.757

Table 1. Results for real image distortions

The final result deals with the gainG behavior with respect to
an arbitrary standard deviation of the additional noise corrupting
the signatures (σj = σ, ∀j = 1, D). Figure 3 showsG as a func-
tion of σ. T sequ does not depend onσ and is is about28.10sec.
The high decrease of theG whenσ grows shows that thesever-
ity of expected distortions is decisive for the response time. This
explains the variability of the response time for the different dis-
tortions in Table 1. However, the gain remains superior to one.
This is due to the learning ofp which guarantees that our method
is better than a sequential scan (equivalent top = 0).



Fig. 3. Time GainG versusσ (log scale)

4.3. TV monitoring system

Our method is integrated in a TV monitoring prototype watching
a growing TV archive DB. It includes today about 14,000 hours of
video (750,000,000 signatures identical to those described in sub-
section 4.2). The signature stream of one TV channel is continu-
ously processed by one single Pentium IV (without TV capture).
Statistical estimation of probability density functionsp(xj − yj)
are computed as in subsection 4.2 but with a whole set of im-
age distortions simply determined by watching TV and asking TV
archivists. The number of signatures together searched,Nsig, is
increasing proportionally with DB size in order to have a con-
stant mean loading time per query which is aboutTload/Nsig =
4.5 ms. For a 14,000 hours DB the total loading time isTload =
16 min. with Nsig = 210, 000. The corresponding delay between
broadcasting and results is3 hours 45 min. The total mean re-
sponse time per query isT tot = T+(Tload/Nsig) = 20.2+4.5 =
24.7 ms. The mean needed time to search for 1 hour of video is
21 min. Figure 4 shows results obtained while monitoring a french
TV channel.

Fig. 4. Broadcast (up) and retrieved videos (bottom)

5. CONCLUSION AND PERSPECTIVES

The proposed statistical features search strategy applied to CBCI
problem gives excellent response times. The sub-linear behavior
of the response time with the DB size allows to control very large
audiovisual DBs even with high signatures rate. This method could
be easily applied to other applications involving large pseudo-inva-
riant feature DBs, such as biometrics or object recognition. In-
vestigations in statistical modeling of data and distortions should
improve the method. However, investigating the signature itself
certainly could be more profitable: a reduction of the sensitivity

to distortions would improve both the retrieval efficiency and the
response time. The independence between components is also a
common objective. Future works will compare different signa-
tures according to these objectives. The impact of independent
component analysis, embedding methods or kernel based methods
is another perspective.
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