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ABSTRACT 

For reconstructing a complex object wavefront from dig- 
ital holograms, we propose a new penalized-likelihood ap- 
proach based on the measurement statistics and edge-preserving 
regularization. The log-likelihood is complicated since the 
measurements are related to the magnitude of the complex 
beam. We use optimization transfer to derive a new sim- 
plified iterative algorithm that monotonically decreases the 
cost function. Unlike the convcntional FkT-bacd holographic 
reconstruction method, the new approach uses all of the 
measured data, and can he applied to holograms with any 
(known) reference beam pattern. Simulation results demon- 
strate the potential for improved image quality. 

1. INTRODUCTION 

In digital holography, the interference between a reference 
beam and a wavefront from an object of interest is recorded 
by an electronic sensor such as a CCD array. Under ap- 
propriate sampling conditions, one can mconstruct the com- 
plex object wave from the digital hologram. The classical 
computer reconstruction method kir off-axis holograms is to 
compute the 2D FIT of the measured hologram. use a win- 
dow to select the small portion of the spectrum cnrrespond- 
ing to the appropriate interference term, shift that portion 
to DC, zero pad, and then take the inverse 2D ET (The 
method is a 2D analog of demodulation of Ah3 audio sig- 
nals.) This simple approach is applicable only to plane wave 
reference beams, uses only a small fraction of the measured 
data, yet can still suffer from interference from the other 
terms, and accounts for noise only implicitly by spectral 
apodization. The potential use of digital holography for 
biological microscopy has renewed interest in finding im- 
proved reconstruction methods for digital holograms,e.g., 

We recently proposed a new numerical recnnstruction 
approach [2] fonnulated from first principles including the 

[ I ] .  
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physical optical model and a statistical model for measure- 
ment noise. The prohlem is ill-posed, so we perform penalized- 
likclihood estimation using edge-preserving regularization. 
The log-likelihood is quite complicated since the ohjcct wave 
is complex whereas the measurements are related to the 
magnitude of the sum of the object beam and the refcrcnce 
beam. Using optimization transfer techniques, we derived 
in [2] an iterative algorithm that monotonically decreases 
h e  cost function each iteration and thus typically converges 
to a local minimizer. The computation prr iteration is com- 
parahle to the EM algorithm for image restoration. The ap- 
proach can he applied to holograms with any (known) refer- 
ence beam pattern. including the types of spherical patterns 
seen in practice. Simulation results show that this statistical 
approach has thc potential to improve image quality in digi- 
tal holography relative tu conventional reconstruclion meth- 
ods. In this paper, we derive a simpler iterative algorithm for 
this problem. 

2. THEORY 

As described in detail in 121, the problem of image recon- 
struction in digital holography can be posed as thc following 
penalized-likelihood estimation problem: 

2 = arg nlin *(e) 

"(2) = E(e) + R ( z ) ,  

where e = (z~,. . . , zn,) denotes the vector of unknown 
pixel values in the object to be recovered, t(z) denotes 
the negative log-likelihood, and R ( e )  denotes a roughness 
penalty function. We assume a Poisson statistical model for 
the measurements: 

yi - Poisson{y%(z)), i = 1:. . . N (2) 

(3) 2 y i ( ~ )  = ~ [ A z ] ~ + , u * ~  + r i ,  

where A t CN '' denotes the system matrix that models 
the imaging system, 'uz t C denotes the ith sample of the 
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refcrence bcam, l'i E [0, w) denotes the additive effect of 
detector dark current and possible gaussian readout noise 
[31, y, E R denotes the %th element of the hologram mea- 
surement (e.g., recorded by a CCD detector) and 

We assume that A, {U%}. { r L } ,  {ut}, are all known. and 
the goal is to determine the image pixel values I .  For in- 
dependent measurements, the corresponding negative lop- 
likelihood is 

N 

a h,(i) = l i l  + r" y,log / P I 2  + r; . ( 5 )  

The minimization problem ( I )  is challenging because z 
is complex and hi( ) is non-quadratic. One can show that 
the (column) gradient ofE(z) is 

where '"" denotes Hermitian transpose. One could attempt 
to find the minimizer x by applying a gradient descent al- 
gorithm of the form 

cy VQ(z("'). (7) z ( T L + l r  = x(nl 

However, the conventional "trial and error" approach to choos- 
ing the step size cy is inconvenient; in general this approach 
is not guaranteed to monotonically decrease the cost func- 
tion so divergence is possible. The dominant computation 
Cor each iteration of any such algorithm is the gradient (6); 
this requires one multiplication hy A and by A'. This is 
compareblc to the EM algorithm for image restoration. 

In [Z], we proposed to apply the uprimimrion rrarisfer 
principle to solve this minimization problem [4]. For each 
iteration n, we find a surmgatefirnctiuri r$(n) that satisfies 
thc two conditions: 

p ) ( z ' r L ) )  = , q X ( n ) )  

qP')(z) 2 Q(z). 

These majorization conditions ensure that the optimization 
transfer algorithm 

will monotonically decrease the cost function, i.e., 

!U 2''1+11 5 q ( p ) ) ,  

Since the cost function is nonconvex, such monotonic meth- 
ods typically will converge to a local minimizcr near the 
initial guess z ' O 1 .  

In this paper, we describe an alternative approach that 
may be somewhat simpler. Given a current guess z, let the 
(negative) gradient define a search direction 

d =  VQ(z)  

and consider the ID "line sea rch  minimization problem 

a(7') = arg mill f ( c u )  
n 

f (a)  = q x  + cud) . 
We propose to apply the principles of optimization trans- 
fer to this ID minimization problem. (An algorithm for a 
simpler problem that employed a similar ID search strategy 
was descrihed in [5].) Note that 

N 

f ( N )  = -&(a) + R ( z  + cud) 
i = l  

where 
y i ( ( ~ )  5 h%([A(z + c ~ d ) ] ~  + u i )  

and 

where "*" denotes conjugate. The key idea here is that the 
functions yi( ) have bounded cuwilture, so it is possible to 
find quadratic surrogate functions of the form 

q i ( q  a') = & ( C Y ' )  + j , ( . . ' ) (N a') + E,(") (a  a y :  

(8) 

%(a;.') 2 Si(.). (9) 

2 

where the cuwatures E ;  are chosen such that 

The condition qi(cu';cu') = si(.') is satisfied by construc- 
tion. Similarly one can find a quadratic surrogate func- 
tion for R ( z  + cud), call it qo(a;a'), with cuwature &(a') 
[6, 71. Then we have the overall quadratic surrogate for 
f (a )  constructed as follows: 

N 
q(a;a ' )=Cqi(a;n ' ) .  

i=O 

We can minimize this surrogate analytically, leading the fol- 
lowing "sub-iteration" for linding the minimizing value of 
a: 
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Being based on the optimization transfer principle, this sub- 
itcration is guaranteed to decrease f ( ) monotonically. Wc 
initialize i t  with cxu'd = 0. which then ensures that when 
the resulting cPew (after one or more sub-iterations) is used 
within the overall iteration (7), the overall algorithm is mono- 
tonic. 

or equivalently 

m(t)[lob+ d s ]  = [mb(t  + s) + w2st + 2b2 wv]ri i,(t) 

wu)t 
uw(ms + 36).  

0 = ru(ut6 + Iu2.s) t2 + 2w(LuiJs + 26' 
+ %'(us + 26) 

This is a quadratic formula in t ,  so one can easily find its 
routs. One can then check thc values of 6 at each ruot. Since 
vi. is a quadratic function o f t ,  the curvature g,(t) is a ra- 
tiona[ function of t ,  and one can show that i t  is bounded. 
So the root corresponding to the larger (necessarily finite) 
value of 6 will be an appropriate choice for Z,. Typically, 
these polynomial manipulations require much less compu- 
tation than computing the cost function gradient (6). 

3. CURVATURES 

It remains tu find curvatures for (8) that ensure the majoriza- 
lion condition (9). Using (5) and (4), we have that 

il"(t) = W ( t )  U, l o g m ( t ) ,  

where 

rni ( t )  = l[A(z + td)],  + + ,rL = Ili + tpi/' + r'i A 2 

4. SIMULATION RESULTS 

Fig. la  shows a simulated ID hologram generated according 
to the model (2) for the case where A corresponds to convo- 
lution with a ?-point moving average filter, for the complex 

= t2 lpi12 + 2trea1(lfpi)  + pi12 + T ,  

A a 
li  = [Az], +'~r , ,p i  = [Ad] ,  . 

For hrevity we alsii write 

It is shown in 121 that the following expression is a suit- 
able choice for the curvature that will ensure majorization: 

provided the maximum is positive and finite. Considering 
the particular furm of m i ( b )  in this prohlem, we can solve 
for &(s) analytically. 

Hereafter we drop the subscript "i" for simplicity. Be- 
cause lia(t) i s  linear in t ,  one can show that 

y m ( t ) m ( s )  m(.s)TiL(t) b(t;  s) = 2711 + - 
m(s) ( t  .s)rrs(t)  

Elementary simplifications lead to 

m(t)iii(s) m ( s ) + i ( t )  
t s  

= 2[ffJb(t + s) + w's t  + 262 W V ] .  

Extrcma of A( ; s )  occur at the zeros of its derivative 
with respcct tu t ,  i.e., where 

i) nI,(t)Th(.S) lfl,(S)m(t) 0 : -  
ilt (t s ) m ( t )  

signal shown in Fig. Ih. 
Fig. 2a shows the conventional reconstruction obtained 

by windowing one of the sidelohes of the spectrum of the 
recorded hologram. This estimate is noisy and has ringing. 

Fig. 2b shows the proposed penalized-likelihood esti- 
mate x using edge-preserving regularization. The NRMS 
error of this approach is  about 7%, compared to 14% for the 
conventional approach. 

Fig. 3 shows the conventional and proposed penalized- 
likelihood reconstruction [or a 2D complex object using the 
same setup as in  [2]. The NRMS error is about 14% for the 
proposed approach and 40% for the conventional approach. 

a) ID hologram Adits spectrum b) Magnitude and'phase of object 

Fig. 1. Simulated ID hologram data and true object. 

5. DISCUSSION 

We have described an algorithm for penalized-likelihood re- 
construction in for digital holography that i s  an alternative 
to the method described in [2]. As in [2], this approach 
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can improve the quality of the image relative to the con- 
ventional FFI-based holographic reconstruction technique. 

reconstruction is not limited by the assumption of a planar 
reference beam. 

1.5 

- -. E- * Moreover, unlike the conventional approach, our statistical 
0 s  

a) Conventional reconstruction b) Proposed recvnstmction The authors acknowledge the contributions of Brian Athey, 
Emmctt Leith, and Kurt Mills. 
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