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ABSTRACT

An advantage of wavelet transform is its efficiency in rep-
resenting natural images, that is, a natural image can be
accurately represented by only a small number of retained
wavelet coefficients. It is interesting to know whether some
common image operations, e.g. rotation, can be performed
very fast in wavelet domain. Preferably, the running time
should depend only on the number of retained coefficients,
not the size of the original image. However, it is not clear
how this can be achieved. In this paper, we consider rota-
tion, and images with a special structure: foveated images.
Wavelet coefficients of a foveated image vanish outside an
arrangement of circles. We exploit this structure to derive
algorithms that accurately approximate rotation. The run-
ning time isΘ(m) wherem is the number of retained coef-
ficients. Experiments show the accuracy of the approxima-
tion.

1. INTRODUCTION

Wavelet transform is known to be efficient in representing
natural images, that is, a natural image can be accurately
represented by only a small number of retained wavelet co-
efficients. Since the amount of data being processed is re-
duced, it brings forth the possibility of speeding up perfor-
mance by operating only on the retained coefficients. Some
works have exploited this characteristic for specific task,
e.g. feature extraction [1]. Preferably, the running time
should depend only on the number of retained coefficients.
However, for some common image operations, e.g. rotation,
it is not easy to achieve the speed-up. This is partly due to
the “shift sensitive” characteristics of wavelet transform, i.e.
a small shift in a signal generates unpredictable changes in
its discrete wavelet transform coefficients. The shift insen-
sitive complex wavelets could be employed to handle the
translation [2] but it is not clear how they can be applied
to handle slightly more complicated image operations like
rotation and shearing. Also note that in general, even if the
original image has many zero coefficients, the operated im-
age could have few or none zero coefficients. Therefore, it
is impossible to have both fast and exact algorithm.
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Fig. 1. (a) the mask when the fovea is at the center; (b)
foveated image whose mask has radius of 30 and locates at
center.

In this paper, we focus on rotation, and a particular type
of image: foveated image. The resolution of a foveated im-
age is highest at a point (fovea) and falling off away from
the fovea. It is corresponding to our biological visual sys-
tem, which has a space-variant nature where the resolution
is high in the center (fovea) but decreasing towards the pe-
ripheral. As the biological visual system is highly effective,
the space-variant nature of foveated image has inspired the
design of many vision and imaging systems [3, 4]. An ap-
proximate foveated image can be obtained from the original
image by multiplying the discrete wavelet transform (DWT)
of the image by a predetermined 0-1 mask followed by the
inverse discrete wavelet transform (IDWT) [4]. The mask
indicates which coefficients are to be retained. Fig. 1(a)
shows the mask when the fovea is at the center and Fig. 1(b)
shows a foveated image (512x512) whose mask has radius
of 30 and locates at the image’s center. Observe that only
a small number of coefficients are retained in the foveated
image. More accurate approximation can be achieved by
using a smoother mask, rather than the 0-1 mask [4].

We exploit the special structure of foveated image to de-
rive fast algorithms that directly process foveated image in
the wavelet domain. The running time is proportional to the



number of coefficients retained. That is, we obtain a speed-
up fromΘ(n2) to Θ(m) wheren2 is the number of pixels,
andm is the number of coefficients retained. We propose
two algorithms. The second algorithm is more accurate but
the first algorithm is faster by a constant factor. Thus, theo-
retically, both algorithms run inΘ(m) time. However, it is
instructive to present both algorithms.

2. THE PROBLEM AND PROPOSED METHODS

2.1. The problem

Consider a foveated imageI1 and its rotated versionI2. The
input of our problem isW1, the wavelet coefficients ofI1,
and the output isW2, an approximation of the wavelet co-
efficients ofI2.

A direct method requires three steps: (i) reconstructing
the foveated imageI1 from W1, i.e. applying IDWT on
W1, (ii) rotating the imageI1 to obtainI2 and (iii) applying
DWT on I2 to getW2.

Assuming that the image size isn×n pixels, each of the
above steps requires a running time in the order ofΘ(n2),
which is considerable when the image is large. This is espe-
cially so when higher order of interpolation is used during
rotation. Recall that theW1 can be represented by small
number of coefficients. Letm the number of coefficients
retained during the foveation. In Fig. 1,m is the number
of 1’s in the mask. We want to design an algorithm that
depends only onm.

Our algorithms are based on the observation that for a
foveated image, the radius of the circles in the mask are
the same across every level. Furthermore, the centers of
the circles all correspond to the same location, which is the
fovea, in the spatial domain. Consequently, we can focus
the operation on the area around the fovea and significantly
reduce the running time.

2.2. Algorithm 1

Consider the sub-bands in the wavelet transform. We call
the i-th level LH, HL and HH high frequency sub-bandhi

(see Fig. 2(a)), andli the LL sub-band of thei-th level.
Thus l3 can be reconstructed froml1, h1 and h2. For a
foveated image, its non-zero coefficients are concentrated
in the arrangement of circles of radiusr shown in Fig. 1(a).
We write hi,r as the coefficients retained in the sub-bands
hi. Thus,hi,r contains coefficients in 3 circles of radiusr,
where each circle corresponds to the LH, HL and HH sub-
band.

Fig. 3 shows the steps of Algorithm 1 when the num-
ber of levels is 3. It is easy to generalize to any number of
levels. In this figure,mask(r0) is an operation that applies
a mask of radiusr0 in the sub-band. For example, afterl3

is applied amask(2r), coefficients at a distant greater than

2r from the fovea will be removed (or equivalently, set to
zeros). The operation “rotate” is the usual image rotation.
We are not concerned with the interpolation method used
during rotation. In our experiment, we employ bicubic in-
terpolation.

At level 1, the inputs of Algorithm 1 arel1 andh1 of
the foveated image. We apply IDWT onl1 andh1 to get
l2. Since the energy ofl2 is concentrated in the circle of
radius2r, to achieve speed-up, a circular mask of radius2r

is applied to obtainl2,2r. Next, l2,2r is rotated to produce
a rotatedK2, follow by DWT to give the sub-bandsL1 and
H1. Similarly, the energy of each of these sub-bands is con-
centrated in a circle of radius r. Hence, we apply a mask of
radiusr onH1 to produceH1,r. At level 2, similar process
is repeated, except that the input isl2,r. Note that mask-
ing is performed a few times in the above steps. Although
masking reduces accuracy, it is necessary to make sure that
the data size is small. After all, the values of the discarded
coefficients are small. This recursive process is carried out
until reaching the final level.

1
l

1
h

2
h

3
h

(a)

e

r
L

,1 e

r
H

,2

e

r
H

,1

e

r
H

,3

(c)

r
L ,1

r
H

,2

r
H ,1

r
H

,3

(b)

Fig. 2. Wavelet transforms of: (a) original foveated image;
(b) foveated image rotated by Algorithm 1; (c) foveated im-
age rotated by Algorithm 2.

Note that each of DWT, mask(), and rotations can be
done inΘ(r2) time and there are onlyN levels. Thus the
total time require isΘ(Nr2), which isΘ(m).

2.3. Algorithm 2

Algorithm 2 is a modified version of Algorithm 1. The main
observation is the following. LetKi,r be the coefficients
obtained by maskingKi with the circle of radiusr. Ideally,
Ki,r should be the same asLi. However, this is not the case
due to the combined effects of rotation and wavelet trans-
formation. Li is more accurate because it is computed in
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Fig. 3. Algorithm 1 to rotate foveated image directly in wavelet domain (dotted lines are for Algorithm 2).

the higher level. Therefore, if we retainLi−1, Hi−1 which
are calculated fromKi, in the final output, the LL sub-band
at leveli will be the impreciseKi.

In Algorithm 2, we introduce a step afterLi is obtained.
We first compute the errorEi = Li − Ki,r. Next, DWT is
applied onEi. The wavelet transform ofEi are then added
to L1, H1, H2, . . ., Hi−1. To ensureΘ(m) computation,
we approximate the DWT by restricting the coefficients in
each sub-band to be in the circle of radiusr.

3. EXPERIMENTAL RESULTS

We implement our proposed algorithms using several dif-
ferent images: “Lena” (512x512), “Mandrill” (512x512),
“Cameraman” (256x256), “Peppers” (256x256) and “Bar-
bara” (256x256). The performance of accuracy achieved is
measured by Normalized Mean Square Error (NMSE). The
wavelet filter used is the biorthogonal 7/11.

Fig. 4 shows the rotated image by different methods
when the degree of rotation is 45, and the radius of the mask
is 15. To clearly show the differences between images, we
present their zoom-in versions whose focuses are around the
fovea. We denoteJ1 the image obtained by directly rotat-
ing the foveated imageI1 in the space domain, which is
showed in Fig. 4(a). We denoteJ2 the image obtained by
a straightforward algorithm: applying DWT onJ1, mask

on the wavelet coefficients and IDWT on the wavelet coeffi-
cients in the mask. The zoom-in ofJ2 is shown in Fig. 4(b).
We denoteA1 andA2 the images obtained by our proposed
Algorithm 1 and Algorithm 2, respectively. The zoom-in of

A1 andA2 are shown in Fig. 4(c) and Fig. 4(d). It is obvious
that the imageA2 is more accurate than the imageA1 and
comparable toJ1.

To compare the differences amongA1, A2, J1 andJ2,
we use Normalized Mean Square Error (NMSE), which is
the mean square error normalized by the energy ofJ1. Fig. 5(a)
shows the NMSE as the rotation degree increases and Fig. 5(b)
shows the NMSE as the radius of the mask increases. Be-
cause of the rotation and wavelet transform, there may ex-
ist spike values on the boundaries of rotated images, which
lead to inaccurate NMSE values. Therefore, we ignore the
image boundary by comparing only the region within the
inscribed circle of the image boundaries. The displayed
NMSE values are the average results of 5 different images
which we mentioned above.

We can see that the NMSE increases as the rotation
degree increases, and decreases as the radius of the mask
increases. It is because the larger the rotating degree is,
the larger the number of non-zero coefficients are created
in wavelet domain. It means that while the radius is un-
changed, the number of non-zero coefficients being discarded
(by our algorithms) increases and consequently NMSE in-
creases. Similarly, when the radius increases, more number
of coefficients are retained and we obtain more accurate re-
sults. The NMSE difference showed in Fig. 5 also confirms
what we have visually concluded from Fig. 4 about the ac-
curacy of the proposed algorithms. Note that the graph of
(J2−J1) indicates the best approximation ones can achieve.
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Fig. 4. Rotated images: (a)J1 obtained by rotating the foveated image Fig. 1(b); (b)J2 obtained by applying DWT onJ1

and IDWT on the coefficients in the mask; (c)A1 obtained by Algorithm 1; (d)A2 obtained by Algorithm 2.

4. CONCLUSION

Although wavelet transforms have been studied for more
than a decade, there are few researches on direct and effi-
cient manipulation in the wavelet domain. In this paper, we
propose two algorithms that directly rotate foveated images
in the wavelet-based compressed domain. The running time
of our algorithms depends only on the number of retained
coefficients, and this is considerably faster than the straight-
forward algorithm. While the proposed approximation al-
gorithms are more efficient, experimental result shows that
the approximation is also accurate. Here is a possible de-
ployment of our algorithms: Suppose a method can effi-
ciently extracts features of foveated images directly from
its wavelet coefficients, and we want to extend it to rotated
images. This extension can be done by first applying our al-
gorithm, follows by the original efficient extraction method.
In the future, it would be interesting to explore similar tech-
niques for other operations.
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Fig. 5. Performance ratios: (a) NMSE as the rotating degree
increases; (b) NMSE as the mask’s radius increases.


