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ABSTRACT

We extend recent work on rate-distortion optimized streaming of
video to include the case when multiple, independently encoded
and packetized versions of the video are available for transmission.
While there has been much recent work on the rate-distortion opti-
mized streaming of packetized video, previous work has focussed
on layered video encodings and encodings that are comprised of a
single set of interdependent packets. In this paper we extend the
rate-distortion optimizing packet transmission algorithms, a major
benefit of which is that they select the optimal source rate from a
rate-scalable encoding on a per-transmission basis, to handle the
case of multiple independent encodings, the most ubiquitous form
of rate-scalable video in use. In our experimental results, we show
up to a 3 dB performance improvement for our multiple-encoding
optimizing scheduler over a non-optimizing scheduler.

1. INTRODUCTION

While there has been much recent work on the rate-distortion opti-
mized streaming of packetized video, previous work has focussed
on layered video encodings and encodings that are comprised of
a single set of interdependent packets. The case of rate-distortion
optimized streaming of video encoded independently at multiple
bit-rates and display qualities has not been previously addressed.

Much of the video content on the Internet, however, is en-
coded independently at multiple bit-rates and display qualities. In
the absence of a widely accepted layered-scalable codec, multi-
ple encodings has become the preferred means of providing rate-
scalability. With multiple encodings, content providers can accom-
modate users connecting to the Internet at varying link speeds, and
in addition, systems like Real Networks’ Surestream technology
(to name one) use multiple independent encodings to respond to
Internet packet loss and delay in a TCP-friendly way [1]. Systems
using multiple independent encodings respond to changing TCP-
friendly rate constraints by dynamically switching to the encoding
with the appropriate rate.

With the ubiquity of video encoded in multiple independent
streams as motivation, we have extended recent work on R-D op-
timized video streaming to include the case of multiple indepen-
dently encoded streams. In this paper we are building upon work
that we presented in [2] which in turn was based on the framework
for R-D optimized streaming in [3]. We begin in Sec. 2 by review-
ing the framework for R-D optimized streaming presented in [3].
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In Sec. 3, we show how we extend the framework in order to ac-
commodate multiple independent streams. In Sec. 4, we present
performance results for our optimized scheduling formulation.

2. BACKGROUND

In this section we briefly review the framework for rate-distortion
optimized streaming in [3] which serves as our point of departure.

The framework assumes that a compressed media representa-
tion has been assembled into packets or data units. Each data unit
has a size in bytes and a time deadline by which it must arrive in
order to be useful for decoding. Each data unit is also associated
with a value for the amount of distortion that will be removed from
the decoded video if the unit is available when needed, and each
data unit has a set of decoding interdependencies with other data
units that are expressed with a single directed acyclic graph.

In the framework, the goal of the optimizing packet transmis-
sion scheduler is to choose the best set of these data units (packets)
to transmit at successive discrete-in-time transmission opportuni-
ties. Because of decoding dependencies among data units, the im-
portance of transmitting a packet at a given transmission opportu-
nity often depends on which packets will be transmitted in the near
future. The scheduler therefore bases its transmission decisions on
an entire plan governing all the transmissions that will occur in the
near future

The plan governing packet transmissions that will occur dur-
ing a time horizon of discrete transmission opportunities is referred
to as atransmission policy, π. Assuming a time horizon of length
N , π can be represented as a collection of length-N binary vectors
πl, with one such vector for each packetized data unitl under con-
sideration for transmission. In this representation, theN binary
elements of a policy vectorπl indicate whether, under the policy,
the data unitl will be transmitted or not at each of the nextN
transmission opportunities, unless an acknowledgement indicates
that the packet has been successfully received.

In the framework, at any transmission opportunity the optimal
π is the one that minimizes the Lagrangian cost function

D (π) + λR (π) , (1)

where, for a given transmission policy,D (π) is the expected
reconstruction distortion andR (π) is the expected transmission
rate.λ controls the trade-off between rate and distortion.

The framework’s expression forD (π) is written in terms of
ε(πl), the data units’ error probabilities under transmission pol-
icy π. ‘Error’ is the event that the data unit does not arrive by
its time deadline for decoding. The framework’s expression for



R (π) is written in terms of the data unit sizesBl in bytes, and
ρ(πl), the expected number of times each unit will be transmitted
under a given transmission policy. Delays and losses experienced
by packets transmitted over the network are assumed to be random
and independent from transmission to transmission. Packet loss is
modeled as Bernoulli with some probability, and packets not lost
are assumed to be delayed according to a shifted-Γ distribution.
Expressions forε(πl) andρ(πl) are given in terms of the proba-
bility distribution functions, transmission policy and transmission
history, and the data units’ arrival deadlines.

The scheduler re-optimizes the entire policyπ at each trans-
mission opportunity to take into account information learned since
the previous transmission opportunity. As a method of actually
finding the optimal transmission policy, exhaustive search is not
generally tractable as noted in [4]. Avoiding an exhaustive search
of the entire space of transmission policies is the main contribution
of [3]. The authors introduce an iterative descent algorithm that
simplifies the search for an optimalπ. The iterative descent algo-
rithm begins with an initial set of transmission policies, and then
proceeds to minimize (1) iteratively. At each iteration (1) is min-
imized with respect to the transmission policyπl of one data unit
while the transmission policies of other data units are held fixed.
Data units’ policies are optimized in round-robin order until the
Lagrangian cost converges to at least a local minimum. Rewritten
in terms of the transmission policy of one data unit, (1) becomes

Jl(πl) = ε(πl) + λ′ρ(πl). (2)

whereλ′ = λBl
Sl

incorporates the rate-distortion trade-off operator
λ from (1), the data unit sizeBl, andSl, a term that expresses the
sensitivity of the overall expected distortion to the error probability
ε (πl) of data unitl. The sensitivity term represents the relative
importance of a particular data unit.

Another contribution of [3] is its method for modeling the re-
construction distortion of a video depending on what packets are
available at the decoder. The distortion model assumes that packet
interdependencies can be expressed with a single, directed acyclic
graph (DAG) in which the packets form the nodes of the graph and
the decoding dependencies are expressed as the directed edges.
The algorithm assumes that as each successive node (representing
a packetized data unit) on the graph becomes decodable, there is
an incremental reduction in the distortion of the decoded media.

3. PROPOSED FORMULATION

In the following subsections we describe how we modify the rate-
distortion optimized streaming framework of [3] to take into con-
sideration multiple independent encodings and the effects of error
concealment that substitutes missing frames with the most recent,
highest quality frame that is decodable. In addition, as in [2] we
extend the formulation to consider the distortion value of packets
at multiple deadlines.

3.1. Modeling Distortion with Multiple Streams

While elegant, the model of distortion and decoding dependency
in [3] does not hold in the case when the scheduler has multiple in-
dependent packetized encodings of the same video available. Sup-
pose, for example, that there are two independent encodings of
a video and both are available at the decoder. During decoding,
the decoder would simply decode the higher quality stream and

ignore the other. In this case, each of the independent encodings
is worth a certain amount in terms of distortion reduction, but the
value when both streams are available is not the sum of the two
individual values. In the DAG model, on the other hand, the effect
on distortion when a packet becomes available is always additive.

In [2] we presented an alternative paradigm for distortion mod-
eling thatcanbe used in the cases of error concealment and mul-
tiple independent streams. In this paradigm, a video frame (or
portion thereof) is assumed to be dependent on some setL of
packets in order to be decoded and displayed, and that the dis-
tortion for that decoded frame may be dependent on exactly which
of the packets inL are available and which are not. By assuming
copy error concealment, the complexity of this paradigm can be
brought down toO (|L|). Below, we apply our distortion mod-
eling paradigm to the case of multiple independent encodings and
previous-frame copy error concealment. We derive the expressions
for the expected distortionD (π) and for the sensitivitySl of the
expected distortion to the loss probability of a particular packetl.
With these in hand we can then apply the iterative descent algo-
rithm of [3] to optimize packet transmission policies.

In our derivation, we assume that there areQ individually en-
coded video streams indexed byq ∈ {0, 1, . . . , Q− 1}, with q =
0 being the lowest quality and andq = Q − 1 being the highest.
Each encoding has a prediction structure I-P-...-P-P with GOPs of
lengthG frames. For simplicity, we assume that each frame of
each encoding is placed into one packet. When a frame is due for
decoding, the highest-quality frame that is decodable is decoded
and displayed. If no encoding of the current frame is decodable
(because packets have not arrived in time) the nearest previous
frame that can be decoded is shown. If more than one quality of
the nearest previous frame is available, the highest quality version
is shown.

Let Dn (π) be the expected distortion of framen under
transmission policyπ. The overall distortion is thenD (π) =∑

n∈W Dn (π), whereW is the set of data units (packets) be-
longing to frames in the window considered for transmission. As-
suming ‘copy’ error concealment and assuming that the video is
independently encoded atQ different quality levels, when it comes
time to display framen, one ofnQ + 1 different images may be
shown. For each of these possible display outcomes, there is a par-
ticular mean-squared error (MSE) between the display outcome
and the pre-encoded image of the frame.

Let dn
q,g,i be the MSE value when framen is the intended

frame for display, but theq-th quality of thei-th frame of theg-th
GOP must be shown instead. Letεn

q,g,i be the probability that the
packet containing thei-th frame of theg-th GOP at qualityq is not
available for decoding at framen’s decoding time (under policy
π, implicitly). As in Sec. 2 we use the idea of a data unit ‘error’
probabilityε (πl), but now instead of absolute indexesl, we index
by qualityq, GOPg, and position in GOPi, and we associate the
error probability with a time deadline that can be specific to frame
n.

In order to find the expected distortion of a frameDn (π), we
need to find the relative probabilities of each of the distortion out-
comesdn

q,g,i. To help us write an expression for thesePr{dn
q,g,i},

we first write some intermediate expressions. LetAn
q,g,i be the

probability that for encodingq, all the packets in GOPg leading
up to and includingi are available for decoding at framen’s dis-
play time.

An
q,g,i =

i∏
l=0

(
1− εn

q,g,l

)



Let Bn
q,g,i be the probability that for encodings with higher quality

thanq, not all of the packets needed to display thei-th frame of
theg-th GOP are available at framen’s display time.

Bn
q,g,i =

Q−1∏
j=q+1

(
1−

i∏
l=0

(
1− εn

j,g,l

))
In the case when thei-th frame of theg-th GOP precedes frame
n, then the image(q, g, i) will not be shown if any lower-quality
stream is decodable through(i + 1)-th frame. LetCn

q,g,i be the
probability that no lower-quality stream is decodable beyond posi-
tion i at framen’s decoding deadline.

Cn
q,g,i =

q−1∏
j=0

(
1−

i+1∏
l=0

(
1− εn

j,g,l

))
With A, B, andC we can write the probability that the display
distortion for framen is dn

q,g,i as

Pr{dn
q,g,i} =

An
q,g,i ·Bn

q,g,i · Cn
q,g,i · εn

q,g,i+1
if g =

⌊
n
G

⌋
i 6= n mod G

An
q,g,i ·Bn

q,g,i
if g =

⌊
n
G

⌋
i = n mod G(∏b n

Gc
m=g+1

∏Q−1
j=0 εn

j,m,0

)
·

An
q,g,i ·Bn

q,g,i · Cn
q,g,i · εn

q,g,i+1
if g <

⌊
n
G

⌋
i < G− 1(∏b n

Gc
m=g+1

∏Q−1
j=0 εn

j,m,0

)
·

An
q,g,i ·Bn

q,g,i
if g <

⌊
n
G

⌋
i = G− 1

(3)

In (3) the first case is the case where the frame(q, g, i) is in the
same GOP as framen (henceg =

⌊
n
G

⌋
), but is earlier in the GOP

thann. The second case is when frame(q, g, i) is framen itself at
qualityq. The third case is when the displayed frame(q, g, i) is in
an earlier GOP thann and is not the last frame in that GOP. The

product terms
∏b n

Gc
m=g+1

∏Q−1
j=0 for this case are the probabilities

that none of the I-frames for later GOPs are decodable. The final
case is the case when(q, g, i) is in an earlier GOP thann but is the
last frame in a GOP.

Using (3) we can write the expected distortion for framen
under policyπ as

Dn =
∑Q−1

q=0

∑n mod G
i=0 Pr

{
dn

q,b n
Gc,i

}
· dn

q,b n
Gc,i

+
∑Q−1

q=0

∑b n
Gc−1

g=0

∑G−1
i=0 Pr

{
dn

q,g,i

}
dn

q,g,i

(4)

The sensitivity of the distortion of framen to the availability
of the packet indexed by(q, g, i) can be found by rewriting (4) in
terms ofεn

q,g,i. For any packet which we index by(q, g, i), (4) can
be rewritten as

Dn = c + εn
q,g,iS

n
q,g,i (5)

The terms that contain a factor ofεn
q,g,i in (4) therefore form the

sensitivity for that data unit. All other terms can be lumped into
c, which does not affect the sensitivity. We don’t include the ex-
act expression forSn

q,g,i here because of space constraints, but the
expression is simply found (if tediously) from (4).

3.2. Extension for multiple deadlines

In this paper as in [2] we consider the value of a packet at mul-
tiple arrival deadlines. We assume that the decoder uses Acceler-
ated Retroactive Decoding (ARD) as presented in [2]. With this
scheme, if packets arrive after they are first needed, the decoder
can go back and quickly decode the dependency chain when the
late packets do arrive in order to “catch-up” to the current playout
position. Thus, late arriving packets still have value. The value of
a packet depends on which frame’s decoding deadline it meets.

In our optimization, we use the same descent algorithm as in
[3], but in addition to using new expressions for distortion and
sensitivity, we also use a new cost function with respect to the
transmission policy of a data unit,

Jl(πl) = ρ(πl) +
∑

n∈W

νtnε(πl, tn). (6)

This expression takes into consideration that data unitl is needed
by multiple framesn for decoding. In the expression, there is a dis-
tinct cost associated with the data unit’s error probability at each
of the frames’ deadlinestn. The quantityε(πl, tn) is the proba-
bility that data unitl does not arrive by time deadlinetn. These
are the same as theεn

q,g,i in Sec. 3.1 but now indexed in terms of

l instead of(q, g, i). The quantityνtn is given byνtn =
Sl,tn
λBl

,

analogous to the reciprocal ofλ′ in (2). Thus for each data unit
an array of sensitivitiesSl,tn are computed, one for frame (with
associated deadline) that requires the data unit for decoding.

4. EXPERIMENTAL RESULTS

In this section we show simulation results that compare the rate-
distortion performance of our multi-stream optimizing transmis-
sion scheduler formulation with the performance of a heuristic,
non-optimizing scheduler. We also compare the performance of
the multi-stream scheduler with an optimizing scheduler that has
available to it only one of the pre-encoded streams.

4.1. Simulations

Our results are for 12 seconds of theForemanvideo sequence en-
coded in five independent streams using an H.26L reference en-
coder. The frame-rate is 10 fps, the GOP length is 10 frames, and
the prediction structure is I-P-. . .-P-P. The rates and distortions of
the five encodings are (rate in kbps, PSNR in dB): (19.6, 27.3),
(35.0, 30.5), (55.9, 33.0), (104.7, 36.3), (167.9, 39.0).

Each frame of each encoded sequence is placed into an in-
dividual packet. The packet network is simulated as in [3], with
delay and loss events statistically independent from transmission
to transmission. Packets are randomly delayed both in the for-
ward and reverse directions according to a shifted-Γ distribution
with shift κ = 10 ms, meanµ = 50 ms, and standard deviation
23 ms. The packet loss probability in both directions is0.20. The
client sends an acknowledgment packets for each media packet it
receives.

We assume that our transmission scheduler has perfect knowl-
edge of the channel statistics. The scheduler’s discrete transmis-
sion opportunities occur regularly every 50 ms. Playout begins at
the client 400 ms after the first transmission. The transmission
window is a fixed interval such that a frame’s data units become



eligible for transmission 400 ms before the frame’s playout dead-
line. As described in Sec. 3.2 and [2], the decoder uses Acceler-
ated Retroactive Decoding (ARD), and the optimizing scheduler
considers the value of a packet at multiple deadlines. The rate-
versus-PSNR results that we show for the optimizing schedulers
are forλ (as in (1)) swept over a range of values. 10 seeds were
run for eachλ. Each data point shown in our figures shows the av-
eraged rate and PSNR outcomes for the 10 seeds run at a particular
λ.

4.2. Heuristic Scheduler for Comparison

The non-optimizing heuristic scheme whose performance we in-
clude as a basis for comparison is an ARQ scheme that uses a pri-
oritized transmission queue. Data units are appended to the queue
when they enter the transmission window. When a transmitted
frame is not ACKed by the 90% point of the round-trip time cdf, it
is again appended to the transmission queue. Packets for retrans-
mission are given priority over packets being transmitted for the
first time. To achieve a fixed transmission rateRh, each time a data
unit l is transmitted another data unit is not transmitted forBl/Rh

seconds. Packets are no longer considered for transmission one
mean forward-trip time before the last frame in the packet’s GOP
is due for playout. For each rate, the encoding (of the five avail-
able) that is observed to give the best performance at that rate, is
chosen for transmission for the entire simulation.

Fig. 1 compares the performance of the optimizing and non-
optimizing packet schedulers, for the case when multiple indepen-
dent streams are available for transmission. We see that the op-
timizing scheduler outperforms the heuristic scheduler by up to 3
dB.

Fig. 2 compares the performance of our multiple independent
encoding optimizing scheduler with the optimizing scheduler from
[2] that has access to only one encoding at a time. There is a
separate R-D curve for the case when the scheduler has available
encoding 0, encoding 1, and so on. We see the advantage of a
scheduler that can select appropriately from multiple independent
encodings at different source rates: the multiple-encoding sched-
uler outperforms any one of the single-encoding schedulers over
most of the range of rates. We do see though, that at the source
rate best suited for an individual encoding, there is a penalty of up
to 0.7 dB for using the multiple-encoding scheduler over a single-
encoding scheduler. We attribute this to the fact that the descent
algorithm is only guaranteed to find a local minimum. It is sensi-
tive to the initial policies used and the order in which policies are
optimized. For instance, we notice better performance from the
multi-encoding scheduler when the algorithm updates policies for
the packets in order of highest quality stream to lowest.

5. CONCLUSION

In this paper we have extended recent work on rate-distortion opti-
mized streaming of video to include the case when multiple, inde-
pendently encoded and packetized versions of the video are avail-
able for transmission. In our simulation results we have shown that
our scheduling algorithm outperforms a non-optimizing packet
transmission scheduler by up to 3 dB. We have also shown that
our multiple-encoding optimizing scheduler outperforms an opti-
mizing scheduler with only one encoding available at most bit-
rates, but at the source rate best suited for the single encoding, we
have observed a penalty, not exceeding 0.7 dB, for the multiple-
encoding scheduler compared to the single-encoding scheduler.
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Fig. 1. Rate-Distortion performance of the optimizing and non-
optimizing transmission schedulers for the case of multiple inde-
pendent encodings ofForeman.
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Fig. 2. Rate-Distortion performance of the multi-encoding opti-
mizing scheduler compared to the performance of single-encoding
optimizing schedulers each transmitting one of the multiple inde-
pendent encodings.

We attribute the performance gap to local minima in the descent
algorithm.
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