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We present an efficient Linear Minimum Mean Square
Error (LMMSE) method for reconstructing full color im-
ages from single sensor Color Filter Array (CFA) data. We
use a representative set of full color images to estimate the
Jjoint spatial-chromatic covariance among pixel color com-
ponents. Then, we derive from it a set of joint color-space,
small linear kernels which predict the missing color samples
as linear combinations of their neighbor observed samples.
The color arrangement of the local mosaic varies with the
window’s location, and this results into a different predictor
for every local mosaic and color sample. As an extension,
we include blur and noise in the training process, obtaining
localized mosaic-constrained Wiener estimators that par-
tially compensate for these degradations. We show that this
simple method provides an excellent trade-off between per-
formance and computational cost.

1. INTRODUCTION

Single sensor color digital cameras based on Color Filter
Array technology [1] capture only one color component at
each spatial location. Therefore, space-color interpolation is
required for reconstructing a full-color image. This process
is termed demosaicing. In the last two decades, many dif-
ferent approaches have been proposed to solve this prob-
lem (see [2] for an up-to-date review). Most demosaicing
methods follow a heuristic approach, with varying results in
terms of performance and computational cost. Some are it-
erative and demand heavy computation (e.g., [3, 4]). These
often provide good insight about the nature of the problem,
and they may also be suitable for off-line processing of cer-
tain images. However, as pointed out in [2], recent advances
in digital image capture are making those computationally
demanding approaches less and less suitable for most prac-
tical situations. On the one hand, the fast increase in spa-
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tial resolution of commercial CCD sensors has not had an
optical counterpart, and, thus, the ratio between the optical
cut-off frequencies and the sensor sampling frequencies is
quickly falling. As a consequence, there is a progressive
reduction in what used to be the signature of CFA tech-
nology: color aliasing. On the other hand, the increasing
speed of embedded digital processing is being overrun by
the larger amount of data to be processed, because of the
increase in both spatial resolution and number of bits per
pixel in images. Thus, keeping low the computational cost
of demosaicing is still very important, and, for most prac-
tical situations low-complexity algorithms are preferable to
time-consuming sophisticated algorithms.

Linear formation models are among the most compre-
hensive for the demosaicing problem (e.g., [5, 6, 7]). They
are usually applied using LMMSE (Linear Minimum Mean
Square Error) for the estimation of the full color image, typ-
ically under a Bayesian frame. As a natural extension of
the image sampling model, these methods have the advan-
tage of incorporating the effect of the Point Spread Function
of camera optics, which can be partially compensated later
on within the demosaicing process. Surprisingly enough,
the linear image formation model has been little exploited
in practical algorithms. The methods referred above suffer
from a variety of problems that make them not suitable for
being embedded in digital cameras. In [7] a sound mathe-
matical approach is followed, to end up embracing assump-
tions that severely reduce the potential of the method, like
the separability of the spectral (chromatic) and spatial cor-
relation. In [6, 7] a global estimation approach is followed,
and the main computations are done in the Fourier domain,
instead of using the more efficient solution of small kernels
in the spatial domain. In addition, the authors do not report
any result that could be compared to other methods. Ref. [5]
presents an insightful Bayesian approach to the same prob-
lem. However, that work does not provide a practical algo-
rithm. Ref. [8] proposes an efficient method based on signal
correlation, but it does not apply an LMMSE optimization.



In this work we have followed an alternative LMMSE
demosaicing approach, keeping the conceptual simplicity
of the linear image formation model, but avoiding the draw-
backs referred above. The key strategies to achieve this goal
have been the following. First, instead of representing every
component in the image formation model and trying to solve
analytically the resulting equations, we have focused on the
property that the missing/degraded color samples are esti-
mated through linear combinations of the observations (be-
cause of applying a MSE optimization to a linear model).
In addition, instead of using a prior for the image (e.g., as
in [5, 6]), we demonstrate that good quality interpolation
can be achieved from the joint spatial-chromatic correlation
(JSCC) obtained from a small set of typical images. Sec-
ond, instead of posing constraints on the image statistics, we
only pose a constraint on the linear estimators themselves,
to make them suitable for practical computation: a small
N x N spatial support. We demonstrate that this constraint,
using N > 9, does not affect significantly the overall per-
formance, whereas it allows us to perform calculations effi-
ciently in the spatial domain. Finally, we decouple the esti-
mation problem into a set of different prediction problems.
These result from the different local mosaics framed when
shifting the estimation window over the CFA.

2. SPATIAL-CHROMATIC IMAGE STATISTICS

Statistical modelling is a key issue conditioning the quality
of image processing tasks. In this case we are only con-
cerned with signal correlation, as we follow a LMMSE es-
timation approach. We can write the JSCC data as:

Caz(c1, 2, An, Ap) = E{z(c1,n,m)z(c2,n+An,m+Ay)}

where (n,m) are the spatial coordinates, and (c;, ¢2) are a
pair of colors. Joint spatial-chromatic image statistics have
been studied for a long time (see, e.g. [9]). For the exam-
ples shown in this work we have assumed a Bayer CFA mo-
saic [1], with red, green and blue filters, although the de-
scribed procedure can be applied to any periodic CFA struc-
ture. In Fig. 1 we show an average radial profile of the es-
timated JSCC (normalized), for all six color pairs, obtained
using the 40 images of [10]. As we demonstrate in Sec-
tions 3.2 and 3.3 the linear estimation depends exclusively
on the JSCC, when there is no blur/noise, and on both the
JSCC and the cross-JSCC between the clean and the de-
graded image, when there is blur/noise.

3. LINEAR MODEL AND LMMSE ESTIMATION

We use the following image formation model for the data
captured in a CFA-based digital camera (see, e.g., [7])

y = S(Hx + wo), (1
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where H represents the camera PSF (blurring), wq is inde-
pendent zero-mean white noise, and S the color sampling
carried out by the CFA array. Being P the number of image
pixels, x has 3P elements and y has only P elements. It is
more convenient to use, instead y = SHx + w, where note
that w = Swyg is still white. The unconstrained MMSE
solution of this linear system is

x(y) = argmin [ly — SHx||, 2)
which is a linear function of y. However, as the involved
vectors and matrices are large, the direct solution of this
equation is computationally costly.

3.1. Tiling the CFA mosaic into local mosaics

As mentioned before, some authors have imposed constraints
on the image statistics to solve Eq. 2 globally in the Fourier
domain [6, 7]. Instead, we force the linear estimators to
have a limited spatial support, considering only the neigh-
bors around the missing/degraded sample. By forcing a lo-
cal estimation window, we allow for a much simpler solu-
tion and ensure a modest computational cost. As a conse-
quence of localizing the estimation window we have now
different local mosaic structures for different locations on
the CFA array. The CFA mosaic is made of the repetition of
a basic sampling pattern, with J color components. If we
take an odd-size square window around every position, then
there are J different possibilities of local mosaics in that
window, as shown in Fig. 2. We distinguish between these
J cases, obtaining different estimators for each local mo-
saic. Note that by decoupling the problem this way we are
not affecting the global LMMSE optimality under the spa-
tial support constraint Although most previous algorithms
use different local interpolators for different locations on the
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Fig. 2. Basic sampling pattern for the Bayer mosaic (up
left), and the resulting J = 4 local mosaics, for N = 5.

CFA, as far as we know none of them derive their estimation
from the image statistics.

3.2. Demosaicing

Let xg be the vector of the unknown color samples of the
(4, 7) pixel, the ith pixel among the L, pixels having a type-
J local mosaic around them. We build the matrices X; =

(x{..‘xij),j = 1...J. Each of these matrices has dimen-

sions (N. — 1) x L;, where N, is the number of colors
(e.g., N, = 3, and J = 4, for a Bayer CFA). Let 5{5 be the
vector containing all observed color samples in the window
around pixel (i, j) (N2 elements). Now we build a matrix
with all these neighborhoods, following the same order as
before: X; = (i{iJLJ ). The linear estimation model tells
us that every unknown color sample is predicted by a linear
combination of their observed neighbors:

X; ~ X, = D;X;, 3)

and the LMMSE optimization implies that

~ 2
D; = argmin E{|[X; — HX; | }. @)

Operating in the previous expression it yields:
~ ~ ~ . o\ -1
D; = E{X;X] }E{X;X]})™' = Cg (wa) )

The elements of the matrices on the r.h.s. of Eq. 5 are joint
spatial-chromatic correlation samples. Thus, we build the
matrices Cy; and Cg, by (automatically) rearranging ele-
ments from C,.

3.3. Demosaicing with blur and noise compensation

We operate the same way as before, but now including all
the N, color samples in X ;. We name Y; each of the J
matrices made of the neighborhoods of the observed color
samples, and obtain:

Df = E{(X;Y]}E(Y,; YT = Cly (CJy) - ©

The estimation is then }/(\] = D??j. For the training, we
simulate the degraded “observations” through linear filter-
ing and noise addition to the originals. Then we estimate the
cross-JSCC (original-degraded) C',, and the JSCC (degraded-
degraded) Cy,. From C,, and Cy,we rearrange terms as
before to obtain C, and CJ, respectively. Finally, using
Eq. 6, we obtain the estimator D?. Note that when there is
blur and/or noise to compensate for, a larger spatial support
is typically required than for the pure interpolation case.

4. RESULTS AND DISCUSSION

From the images of [10]' we selected numbers 18, 31, 32,
33, 12, 34, 39, 15, 40, 16, 17 and 19, in 512 x 768 format
(the same images as in [11]). We estimated C, for each
of these twelve images using the other eleven, and derived
from C,, the corresponding linear interpolators. Then, we
simulated the Bayer mosaic and applied our demosaicing
method. We have compared our method to some state-of-
the-art techniques [3, 8, 4, 1172, as well as to two reference
methods (Bilinear and Nearest Neighbor). Table 1 shows
average error using MSE for each color channel, and the
S-CIELab metric AE?, [12] (assuming a 72 dpi display
seen from 18 in.), as well as running times (using MAT-
LAB(c) under a Pentium IV, 2.39 GHz). Because of its sim-
plicity, our approach is very fast, but it still provides good
performance. Fig. 3 displays these results on the AEY, -
running time plane. Although we do not mean to equate
running time to complexity, we think this graph is still sig-
nificant. We see that the methods we compare to (circles)
are grouped into two broad classes, namely high speed, low
quality” (nearest neighbor, bilinear: up left), and "medium-
low speed, high quality” (the rest). Our method, for N =9
(square) lyes on the imaginary corner where the two classes
meet, sharing the speed range with the first group, but the
quality with the second. Fig. 4(top) shows a visual compar-
ison of the bilinear interpolation with our method (N = 9).
See how, despite having a comparable cost, ours preserves
much better the details and it has much less color artifacts.
Finally, we obtained localized mosaic-constrained Wiener

estimators that partially compensate for blur. We simulated
the blur using an isotropic Gaussian filter with o = 3, and
then applied a 8-bit quantization. Fig. 4(bottom) shows a
crop from a blurred image and its result (/N = 15). Note that
usually deblurring is applied affer the image has been demo-

saiced, a suboptimal procedure. A fast non-linear post-processing

(see [2]) could be applied here to remove high-frequency ar-
tifacts.

! Although this set is not representative of what is captured by a modern
digital camera, we have used it here for comparison purposes.

2Many thanks to Dr. Xin Li, for providing us Matlab(c) code imple-
menting these methods.
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Fig. 3. Average S-CIELab performance vs. running time.
Circles, from left to right: Nearest Neighbor, Bilinear In-
terpolation, and those of references [8, 11, 3, 4], in that
order. Square: our method, with N = 9.

Fig. 4. Up: comparison between bilinear interpolation
(left) and our method (right). Down: a blurred image
(left), and our result of taking its Bayer mosaic, and demo-
saic it with blur and noise compensation (right).

5. CONCLUSIONS

We have presented a fast demosaicing method based on joint [2] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer,
spatial-chromatic image statistics and a linear formation model. and R. M. Mersereau, “Demosaicking: Color filter array
Its performance is comparable to that of sophisticated, non- interpolation in single chip digital cameras,” IEEE Signal
linear methods. This has been achieved by imposing a lim- Processing Magazine, September 2004.

ited spatial support to the estimation kernels. We have demon- [3] B. K. Gunturk and R M. Mersereau, “Color plane interpo-
strated that a few examples of typical images suffices to de- lation using alternating projections,” IEEE Trans. on Image
rive interpolation kernels for other images. We have also Proc., vol. 11, no. 9, pp. 997-1013, 2002.

shown how to include blur and noise compensation in the [4] W. Lu and Y. P. Tan, “Color filter array demosaicing: new
process. Finally, an interesting possibility to explore is the method and performance measures,” IEEE Trans. on Image

Proc., vol. 12, no. 10, pp. 1194-1210, 2003.

[5] D. H. Brainard, “Bayesian method for reconstructing color
images from trichromatic samples,” in Proc. IS&T 47th An-

use of training sets adapted to specific types of images.

MSE AEg, Time nual Meeting, Rochester NYY, 1994, pp. 375-380.
Red ‘ Green ‘ Blue §-CIELab (s) [6] D. Taubman, “Generalized wiener recontruction of images
Near. Neig. 134.11 | 108.71 | 182.52 | 291 0.38 from colour sensor data using a scale invariant prior,” Proc.
Bilinear 121.65 | 33.06 | 130.56 1.65 0.48 of Int. Conf. on Image Proc., vol. 3, pp. 801-804, 2000.
Pei [8] 13.53 441 14.74 0.86 2.57 [7]1 H.J. Trussel and Robert E. Hartwig, “Mathematics for demo-
Li[11] 7.87 3.57 8.48 0.83 3.51 saicking,” IEEE Trans. on Image Proc., vol. 11, no. 4, pp.
Gunturk [3] 8.08 3.70 10.57 0.85 14.38 485-492, 2002.
Lu [4] 8.72 5.58 11.78 0.77 1103.14 [8] S. C. Pei and 1. K. Tam, “Effective color interpolation in
N7 15.56 6.52 17.04 1.04 0.59 CCD color filter arrays using signal correlation,” IEEE Tran.
Ours | N9 13.86 5.82 15.69 0.99 0.65 on Cir. and Sys. for Video Technology, vol. 13, no. 6, pp.
N 11 13.34 5.63 15.05 0.98 0.74 503-513, 2003.
NI 12.98 4.48 14.62 0.97 0.96 [9] G.J.Burton and I. R. Moorhead, “Color and spatial structure

in natural scenes,” Applied Optics, vol. 26, pp. 157-170,
1987.

[10] 40 scanned images, “Eastman kodak(c) photographic color
image database,” 1993.

Table 1. Average mean square and S-CIELab error for the
12 images, including running times. See text for details.

[11] X. Li, “Demosaicing by successive approximation,” /EEE
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