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BAYESIAN DENOISING BASED ON THE MAP ESTIMATION IN WAVELET-DOMAIN
USING BESSEL K FORM PRIOR

Larbi Boubchir and Jalal M. Fadili

Image processing group, GREYC UMR CNRS 6072
ENSICAEN, 6 Bd du Maréchal Juin 14050 Caen, France

ABSTRACT

In this paper, a nonparametric Bayesian estimator in the
wavelet domain using the Bessel K Form (BKF) distribu-
tion will be presented. Our first contribution is to show how
the BKF prior is suited to characterize images belonging to
Besov spaces. Exploiting this prior, our second contribution
is to design a Bayesian L;-loss maximum a posteriori esti-
mator nonlinear denoiser, for which we formally establish
the mathematical properties. Finally, a comparative study is
carried to show the effectiveness of our Bayesian denoiser
compared to other denoising approaches.

1. INTRODUCTION

In the last decade, the nonparametric wavelet-based regre-
ssion has been a fundamental tool in data analysis. Non-
parametric regression (or denoising) estimators provide a
powerful tool for recovering an unknown image, say g,
based on sampled data that are contaminated with noise
using multi-scale decompositions. Many of these esti-
mators have been developed based on Donoho and John-
stone’s work [1]. Since then, various Bayesian approaches
for nonlinear wavelet shrinkage estimators have been de-
veloped recently, and various priors have been proposed
to model the statistical behavior of the noiseless wavelet
coefficients. These estimators impose a prior distribution
on wavelet coefficients designed to capture the sparseness
of the wavelet expansions. Then the image is estimated by
applying a Bayesian rule to the resulting posterior distribu-
tion of the wavelet coefficients. Various prior choices can
be found in the statistical literature (see [2] for a detailed
review). For example, a popular prior is the Generalized
Gaussian Distribution (GGD) proposed by Mallat [3], and
used by many others, or the a-stable prior used by Achim
[4]. However, the GGD prior suffers from a lack of captur-
ing the heavy tail behavior of the observed wavelet coeffi-
cients densities. The a-stable prior show their superiority in
fitting the mode and the tail behavior of the wavelet coeffi-
cients distributions. But their hyperparameters estimator is
very poor in the presence of contaminating noise and re-
mains an important issue. Furthermore, in both the GGD

and the a-stable priors, the derived Bayesian estimator has
no closed analytical form in general situation and involves
intensive numerical integration.

In our approach, we propose a prior statistical model
based on BKF. The BKF is a suitable model provided that
the resulting wavelet coefficients marginals are: unimodal,
symmetric around the mode and leptokurtic. The first two
conditions are widely adopted in the literature and are com-
mon to other priors such as the a-stable or the GGD models.
The last condition simply means that the prior is a sharply
peaked distribution with tails that are heavier as compared
to normal density of the same variance. Then, the BKF is
adapted to capture the heavy tail behavior of wavelet coeffi-
cients densities. In this paper, our first contribution is to
show how the BKF prior is suited to characterize images
belonging to Besov spaces. More specifically, we shed the
light on the relationship between the parameters of the BKF
prior and those of the Besov space within which realizations
of such a prior are likely (almost surely) to fall. Exploiting
this prior, our second contribution is to design a Bayesian
L+ -loss maximum a posteriori estimator nonlinear denoiser,
for which we formally establish the mathematical proper-
ties.

2. NONPARAMETRIC WAVELET-BASED
REGRESSION

Let g, m,n =0, ..., N — 1 equally-spaced sampled of a
real-valued image g. IV is considered as a power of 2 (N =
27). The goal is to recover the underlying function ¢ from
the observed noisy data y,,,, corrupted with Gaussian white
noise, without assuming any particular parametric structure
for g. Let 2%, (resp. d%,) be the detail coefficient of the
true image (resp. observed noisy image) at location (m, n),
scale j and orientation o. Due to the orthogonality of the
basis, the DWT of white noise are also independent normal
variables with the same variance. It follows from Eq.1 that:
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d2, =29 temn,j=Jer...,J=1;m,n=0,...,22—-1 (1)

where J. is the coarsest scale of the decomposition. The
approximation coefficients are kept intact because they rep-
resent low-frequency terms that contain important features
about g.



3. THE BESSEL K FORMS DISTRIBUTIONS

Let g be a filtered version of an image g by the bandpass
filter F'. Using the transported generator model, the density
function of gy has been shown to be [5] forp > 0,¢ >0
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(2)
where K, p and c are respectively the modified Bessel
function (defined as [6]), the shape and scale parameters.
We can also reparametrize this PDF by defining o, = /pc
which will be useful in the following:
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If p > 1, we get closer to the Gaussian case. If p < 1, the
PDF becomes more sharply peaked and the tails are heavier.
The wavelet detail coefficients densities have been already
observed to be sharply peaked and heavily tailed [3]. This is
exactly the property which is captured by a BKF distribution
where 0 < p < 1 and c strictly positive. The latter property
has been extensively illustrated in [7].
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4. BKF PRIOR AND BESOV SPACES

The Besov spaces form an important spaces class in the
image processing domain. The advantage of Besov spaces
is that they are much more general tool in describing the
smoothness and the regularity properties of functions, e.g.
piece-wise smooth or with isolated singularities, etc. Here,
instead of the original definition of Besov spaces through
the modulus of continuity, we will focus on a definition
of the Besov space norm using a practical characterization
with the wavelet coefficients.

Definition 1 Let g = >, ;1) where xj are the

wavelet coefficients and 1) is a wavelet with sufficient num-
ber of vanishing moments [8]. The Besov norm for the func-
tion g € By is related to a sequence space norm on its

wavelet coeﬁcients [8] and is given by:
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forl <r < oowheres' = (s+ 3 — 1). s can be viewed as
a regularity parameter of the image g.

This norm equivalence can also be related to the prior dis-
tribution of wavelet coefficients at each detail scale. The
following theorem gives an explicit relationship between the
parameters of the BKF prior model and the Besov space
within which realizations of the BKF prior will fall (almost
surely).

ifq= o0

Theorem 1 Let xj;, ~ BKF(p,o;) with parameteriza-
tion (3), where 0 < p < 1 and 0; = 002798 (the scale
invariance property of images), with (oo > 0,8 > 0).
Then, for a fixed xo,0, g € B}, almost surely if and only
if 6 > (s—i—%),forl <r<ooandl < q< oo.

The proof parallels that of [9] that was also followed by
[10] to prove a theorem similar to ours with the GGD prior,
although our bound is tighter than theirs and is valid even for
the case ¢ = oco. Actually, we can generalize this result to
the more general family of scale-mixture of Gaussian priors
under appropriate conditions. This will be the subject of a
forthcoming paper.

5. MAP BAYESIAN DENOISER

5.1. Marginal PDF of the wavelet coefficients

In the Bayesian approach, a prior is imposed on the wavelet
coefficients designed to describe their distribution. It is also
assumed in the prior model that the wavelet coefficients
x% of the true image are mutually independent random
variables and independent of the noise process €,,,. The
detail coefficients x at each scale and each orientation are

BKEF distributed (using parameterization 2):
z~ BKF(p,c) ®)

and the probabilistic model associated with d conditionally
on x is Gaussian. As far as the marginal PDF of the noisy
coefficients is concerned, it was formally shown in [7] that a
very accurate analytical approximation of this PDF is given
by:
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#(d;0,0?) is the Gaussian PDF with variance 0. D, ()
stands for the Parabolic Cylinder function of fractional or-
der v, which is valid for 0 < p < 1and ¢ > 0.

5.2. Hyperparameters estimation

In the image denoising context, one must elicit the hyper-
parameters estimation problem in each sub-band to imple-
ment the denoiser. The approach we propose in the present
paper is based on higher order statistics, i.e. cumulants. It
is obvious to show that adding a Gaussian process to a BKF
process will only modify its variance but not the other cu-
mulants. Thus, if one is able to measure o, then this esti-
mate could be used. If such is not the case, o is estimated
from the H H orientation at the finer scale using the popu-
lar MAD estimator [1]. Using this estimate one can easily
derive the following estimates of p and c at each sub-band



from the noisy observations using their 2nd and 4th order
cumulants:

p = 3max(ia — 6°,0)% /R4, ¢ = max(ke —6°,0)/p  (7)

5.3. MAP term-by-term denoising

In the Bayesian framework, to obtain wavelet shrinkage es-
timates of the unknown image ¢ different losses will lead
to different Bayesian rules [2]. Here, We use the L;-based
Bayes rules correspond to the MAP estimator and we derive
a analytical expression for its expression. The MAP estima-
tor of = given the noisy observation d can be easily derived
as being:

i‘JWAP(d) = arg m;ixfar\d(x‘d) = arg mgxfd\ar(d — ) fx (x§p7 c)

(®)
The following proposition gives a general analytical expre-
ssion of the MAP estimates of the wavelet coefficients z
under the observation model in Eq.1, conditionally on the
hyperparameters {02, p, c}.

Proposition 1 For 0 < p <1 and c strictly positive.

o Under the observation of Eq.1, the BKF MAP estima-
tor is given by:
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e The BKF MAP estimator is equivalent to universal
2
hard thresholding for °- = log N as p — 1 (lapla-
cian prior) or large N.

Fig.1 shows the Bayesian rule input-output curves obtained
using the result of proposition 1. The MAP estimator is of
shrinkage-type, even-symmetric and is continuous in both d
and A. It it always below the identity line and approaches it
when |d| — oo at the rate O(|d|~1). The last result stated is
that the universal threshold seems to be a quite pessimistic
bound attained when the signal-to-noise ratio is low. The
same conclusion was also drawn by [11] when dealing with
the GGD prior.
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Fig. 1. The MAP Bayesian rule input-output curves (zarap(d)
as a function of d) with different values of SNR (varying c).

6. EXPERIMENTAL RESULTS

We now assess the performance of our BKF Bayesian de-
noiser based on the MAP estimation by comparing it to va-
rious denoising methods. Six other denoising algorithms
are considered: the universal threshold Hard and Soft thre-
sholding, the Stein Unbiased Risk Estimator (SURE), the
GGD denoiser (based on the MAP estimation) [11] and the
original version of the a-stable Bayesian denoiser [4]. The
Oracle threshold estimator, with the best threshold obtained
from the original image, was also used as a reference.

Beside visual quality, we also calculated the PSNR
(signal-to-MSE ratio) in order to quantify the achieved per-
formance improvement. The overall performance was quan-
tified on a digitized database of 100 test images [12]. The
DWT employs Daubechies compactly-supported wavelet
with regularity 4. The coarsest level of decomposition was
chosen to be (log, log N+1) from asymptotic consideration
[2].

Fig.2 shows the resulting images for each denoising
methods for the Lena image with an input SNR;, = 15dB
(0=20). One can see clearly that the visual quality of our
BKF Bayesian denoiser is superior to the other methods but
remains comparable to the GGD in this situation of good
SNR.

In Fig.3, we have depicted the average PSNR over the
20 runs and the whole database (100 test images) for each
denoising methods, as a function of SNRy,,. The behavior
described before is confirmed by this plot. That is, the BKF
prior MAP estimator outperforms the other estimators. The
difference in performance between the BKF and both the
GGD and the Oracle threshold is less salient at low SNRs.
The opposite is observed for the a-stable prior as the differ-
ence increases favorably for the BKF at low SNRs.

7. CONCLUSION

In this paper, a wavelet-based Bayesian denoiser based on
the MAP estimation using the BKF prior was presented. We
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BKF_map 20.31dB

GGD_map 19.97dB alpha—stable 19.10dB
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Fig. 2. Visual comparison of various denoising methods on Lena image. This image is corrupted by Gaussian noise with an input
SNRi, = 15dB (0=20). The Bayesian MAP denoiser with the BKF prior is clearly superior to the other methods.
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Fig. 3. Average PSNR over the 20 runs and the 100 image
database for each denoising methods, as a function of the SNRj,.

have shown that, under suitable conditions, the BKF prior is
well adapted to characterize functions in the Besov spaces.
Experimental results on a large database have shown the su-
periority of our Bayesian denoiser compared to the other
denoising approaches. This suggests that the BKF prior is
an accurate model adapted to capture the sparseness beha-
vior of the wavelet coefficients for a large class of images,
which confers to the corresponding MAP estimator good
denoising properties. Our effort are now directed towards
extension of these Bayesian models to translation-invariant
and directional transforms such as curvelets.
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