
Predictive Compression of Dynamic 3D Meshes

K. Müller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand
Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, Image Processing Department

Einsteinufer 37, 10587 Berlin, Germany
{kmueller/smolic/kautzner/eisert/wiegand}@hhi.de

Abstract—An efficient algorithm for compression of dynamic
time-consistent 3D meshes is presented. Such a sequence of
meshes contains a large degree of temporal statistical dependen-
cies that can be exploited for compression using DPCM. The ver-
tex positions are predicted at the encoder from a previously de-
coded mesh. The difference vectors are further clustered in an
octree approach. Only a representative for a cluster of difference
vectors is further processed providing a significant reduction of
data rate. The representatives are scaled and quantized and fi-
nally entropy coded using CABAC, the arithmetic coding tech-
nique used in H.264/MPEG4-AVC. The mesh is then recon-
structed at the encoder for prediction of the next mesh. In our ex-
periments we compare the efficiency of the proposed algorithm in
terms of bit-rate and quality compared to static mesh coding and
interpolator compression indicating a significant improvement in
compression efficiency.

Keywords: 3D Mesh, Dynamic Meshes, Animation Coding,
DPCM, Spatial Clustering

I. INTRODUCTION
In the MPEG-4 Visual standard, the coding of dynamic meshes
is specified by using 3D mesh coding (3DMC) for the first
mesh and Interpolator Compression (AFX-IC) for the anima-
tion part. For some specific meshes, i.e. head or body models,
facial and body animation parameters have been introduced
that also represent dynamic time-consistent 3D meshes. We
consider generic time-consistent 3D meshes, for which we
have developed a new coding scheme for efficient transmis-
sion. The algorithm is not only usable for our application in-
volving 3D Video Objects (3DVOs) but for other computer
graphics applications as well. Our coding algorithm com-
presses dynamic meshes in a new and highly efficient way by
temporal prediction, spatial clustering, and context-based
adaptive binary arithmetic coding.

A number of contributions to 3D mesh coding have been
published in the past. Polygon meshes as a 3D surface repre-
sentation with 3D points and connectivity have initially been
considered for compression in a static way. The contributions
were focused on compression of vertex positions and connec-
tivity [14][4]. Static mesh coding exploiting spatial dependen-
cies of adjacent polygons is also currently part of MPEG-4 [8].
With the creation of animated meshes and mesh sequences
with changing vertex positions over time, dynamic approaches
have been introduced. In [12] a decomposition of the vertex
position matrix is suggested, allowing a better decorrelation of
different types of mesh deformation over time. The deforma-
tion is described by special animation parameters, representing
affine motion or free-form deformation. The residual between

real mesh deformation and estimated animation parameter de-
formation is then coded. The temporal deformation is sepa-
rated into low and high frequency motion - an approach that
was later used in [15] to introduce a multiresolution approach
for dynamic mesh coding. Dynapack [6] analyzes spatial and
temporal dependencies using a predictor to exploit similarities
of neighboring points. Besides this prediction, 3D points are
compressed directly and not represented by substitutes, an ap-
proach that is taken in [1]. Here, principal component analyses
(PCA) of the geometry covariance matrix is carried out to re-
duce spatial correlation. By applying linear predictive coding
to PCA components, a fast algorithm was introduced in [11].

Finally, a spatial clustering algorithm for motion vectors
was introduced in [15], predicting motion vectors within the
object’s bounding cube by tri-linear interpolation of the cube’s
corner vectors. This approach was adopted for spatial motion
vector clustering which is one component of the algorithm that
is described in this paper.

II. CODING OF DYNAMIC 3D MESHES
MPEG-4 Visual currently provides an efficient tool for com-
pression of static 3D meshes [8]. In the dynamic case, the
3DMC algorithm codes each mesh of a sequence separately
(corresponding to intra only coding in video). We assume
time-consistent meshes that contain a large degree of temporal
statistical dependencies that can be exploited for further com-
pression. We have therefore developed a novel compression
scheme for such time-consistent dynamic 3D meshes (Differ-
ential 3DMC (D3DMC)).

Intra/Inter
Switch

Octree
Clustering

Scal./
Quant.

m t()
+

+

MPEG-4
3DMC

Reconstr./
Inv Scal.

Octree
Reconstr.

)(ˆ to

o t()d t() Arithmet.
Coding

Memory

-
y t()

0
)(ˆ td)(ˆ tm

)1(ˆ −tm

)1(ˆ −tm

Figure 1. Block diagram of the D3DMC encoder

Figure 1 shows a block diagram of the encoder. It contains
MPEG-4 3DMC as fallback mode that is enabled through the
Intra/Inter switch that is fixed to either one for each 3D mesh
of a sequence. This Intra mode is used for instance when the
first mesh (I mesh) of a Group of Meshes (GOM) is encoded,

0-7803-9134-9/05/$20.00 ©2005 IEEE

i.e., when no prediction from previously decoded meshes is
used. Additionally, I meshes can be used by the encoder in any
other case, e.g., when the prediction error in D3DMC becomes
too large. This mode provides backward compatibility to
3DMC and ensures that D3DMC can never be worse than
3DMC. The newly introduced predictive mode for mesh cod-
ing (P meshes) consists of the following steps:
1. The previously decoded mesh is subtracted from the cur-

rent mesh to be encoded. This step can only be done if
time-consistent meshes with a common connectivity are
available, and therefore we have constrained the mesh ex-
traction process as described above. Only the difference
signal between original and prediction is further processed
which are called difference vectors.

2. The spatial clustering algorithm by Zhang and Owen [15]
is applied to the difference vectors, in order to compute
only very few representatives for a number of vectors. This
algorithm uses an octree structure with large cell sizes in
spatial regions of homogeneous motion and small sizes for
outliers. The result is a number of substitute vectors repre-
senting the motion vectors and octree structure information.

3. The substitute vectors are passed to an arithmetic coder us-
ing context-adaptive binary arithmetic coding (CABAC)
[13] to efficiently adapt to the signal statistics. Analysis of
the probability density function (pdf) of the data has shown
a Laplacian distribution that is superimposed by small
peaks at varying positions due to the clustering algorithm.
For CABAC, the binarization uses unary/kth-order Exp-
Golomb codes to not only assign small code words to most
frequent symbols but also fit to certain outliers that fre-
quently occur. Furthermore, the unary as well as the Exp-
Golomb part sizes are calculated from the data to minimize
overall code length. Thus the algorithm can adapt to chang-
ing statistics, since 3D meshes exhibit a variety of global
and local motions that significantly modify the corner or
substitute vector distribution An important feature of
CABAC is its usage of multiple probability models to bet-
ter fit the input signal statistics i.e. that for each element of
the unary part of the unary/kth-order Exp-Golomb code-
word a different probability model is applied. These prob-
ability models adapt efficiently the most frequent code-
words. Two additional probability models are used to en-
code the resulting octree structure. One probability model
adapts to bits representing nodes and leaves of the octree
the second probability model adapts to bits which give evi-
dence if a node or leaf of the octree contains data to be en-
coded.

III. EXPERIMENTS
The coding experiments consist of two parts.
1. The introduced predictive coding algorithm is compared to

the 3DMC static mesh coding from MPEG-4 [8]
2. The compression of the P meshes or animation information

is compared to the state-of-the-art MPEG-4 AFX interpola-
tor compression (AFX-IC)

The rate distortion curves measure bit-rate in kbit/s against ge-
ometry distortion between reconstructed and original mesh us-
ing the Hausdorff distance [5] providing the maximum Euclid-
ean distance between two wireframes. To analyze the quality,

the average root mean squared error (AVGRMSE) is used for
mesh-to-mesh comparison, as it represents a common measure
for mesh evaluation, as in “Mesh” [3] and “Metro” [2]; two
tools that automatically calculate distances between 3D
meshes. “Metro” additionally provides a visual comparison,
which was used to generate visual results in this paper. For the
dynamic mesh comparison with AFX-IC, the average distor-
tion error (DA) is used as specified in [7]. Here a trapezoidal
2D displacement area is calculated between consecutive
meshes, including the spatial mesh error and the temporal dis-
tance between consecutive P meshes. The temporal distance
has to be considered in case of varying temporal distances be-
tween consecutive meshes, as described for the coordinate in-
terpolation syntax in the following subsection. The experi-
ments were performed with the “Chicken Crossing” sequence,
which consists of 400 time-consistent meshes with 3030 verti-
ces produced by animation of a Chicken model as well as the
“Humanoid” sequence, with different resolutions at 498, 1940
and 7646 vertices and 153 time-consistent meshes.

A. 3DMC Coding Results
In Figure 2 the results for D3DMC are compared with 3DMC.
For D3DMC results for a GOM size of 10 (D3DMC GOM10)
and 400 (D3DMC GOM400) are shown. A GOM size of 400
means that only the first mesh of the sequence is coded with
3DMC and the rest with D3DMC. A significant increase of
compression performance is shown compared to 3DMC.

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200 1400 1600

Bitrate R [kbit/s]

AV
GR

M
SE

3DMC D3DMC GOM10 D3DMC GOM400

Figure 2. Average RMSE over bit-rate for 3DMC, D3DMC with GOM10 and
GOM400, Chicken Crossing sequence

3DMC requires for the same distortion an order of magnitude
more bit-rate compared to D3DMC. When reducing the
amount of 3DMC-coded meshes for D3DMC by moving from
GOM10 to GOM400, another factor of 2 in bit-rate reduction
can be achieved.

Figure 3. Original mesh (left) and reconstruction error and error distribution
using 3DMC at 915 kBit/s (middle) and D3DMC GOM10 at 364 kBit/s

(right), Chicken sequence

Figure 3 visualizes the reconstruction error. The original mesh
is shown on the left, 3DMC in the middle and D3DMC on the

right. The colors (see histogram to the left of the error images,
where blue represents a small error, red a large error) indicate
the amount of reconstruction error. Both color codes have a
maximum value of 0.085 to allow better comparison. The
color histograms show, how the reconstruction quality has im-
proved for D3DMC in comparison to 3DMC. The middle pic-
ture of Figure 3 shows an error distribution with large errors.
In comparison to that, error distribution for D3DMC on the
right is limited to very small values not exceeding the value
0.001.

B. Animation Coding Results
For state-of-the-art coding of dynamic meshes or mesh anima-
tions, usually MPEG-4 AFX Interpolator Compression (AFX-
IC) is used for compression of dynamic meshes. Therefore
D3DMC is compared to AFX-IC as shown in Figure 4.

0,0000

0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

0,0040

0 50 100 150 200 250

Bitrate [kbit/s]

D
is

to
rti

on
 D

A

D3DMC 170keys AFX-IC 170keys
D3DMC 400keys AFX-IC 400keys

Figure 4. Distortion over bit-rate for D3DMC and AFX-IC with 170 and 400
keyframes (GOM400), Chicken Crossing sequence

First the mesh sequence was coded as GOM400 using both
methods (gray curves). Here D3DMC performs better than
AFX-IC especially for lower bit-rates. As an example, the bit-
rate is reduced by 50% at a distortion measure of 0,001.

Additionally, the number of meshes within the GOM was
reduced to a subset of 170 key-meshes out of the original 400
P meshes before coding (black curves). This approach is simi-
lar to video coding, where a number of successive B frames is
interpolated from the leading and trailing P frame. Here, the
P frames represent the key-meshes, while the B frames are ne-
glected. Thus, only the I mesh of a GOM and all key-meshes
are coded and transmitted. For the shown mesh sequence, the
temporal distribution of key-meshes was obtained from the
motion within the sequence: In case of linear motion over a
larger number of meshes only few key-meshes were selected,
while in areas of abrupt motion changes key-meshes are se-
lected rather dense. After decoding, the neglected meshes have
to be linearly interpolated for each single 3D point. If a 3D
point exhibits non-linear motion between two key-meshes, in-
terpolation errors are introduced for the points of the interme-
diate meshes. In the case of lossy compression, the interpola-
tion error is added to the reconstruction error. In Figure 4 the
results for the reduced sequence (black curves) are similar to
the non-reduced sequence (gray curves). Comparing the re-
duced and non-reduced sequence for D3DMC (solid curves), a
decrease of 30% in terms of bit-rate can be achieved by reduc-

ing the sequence from 400 to 170 key-meshes before coding
and linearly interpolating the full sequence after decoding.

Figure 5. Original mesh (left) and reconstruction error and error distribution
using AFX-IC at 125 kBit/s (middle) and D3DMC at 126 kBit/s (right),

Chicken sequence

Figure 5 visualizes the reconstruction error. The original mesh
is shown on the left, AFX-IC in the middle and D3DMC on the
right. Both color codes have a maximum value of 0.078. The
color histograms show, how the reconstruction quality has im-
proved for D3DMC in comparison to AFX-IC at the same bit-
rate.

For the Humanoid sequence, where different resolutions
are given, the results are shown in Figure 6.

0,0000

0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

0 50 100 150 200 250 300

Bitrate [kbit/s]

D
is

to
rti

on
 D

A
D3DMC 498 vertices D3DMC 1940 vertices D3DMC 7646 vertices
AFX-IC 498 vertices AFX-IC 1940 vertices AFX-IC 7646 vertices

Figure 6. Distortion over bit-rate for D3DMC and AFX-IC with 498, 1920
and 7646 vertices, GOM153, Humanoid sequence

For the lowest resolution (black curves), D3DMC is slightly
worse than AFX-IC. For the medium resolution of 1940 verti-
ces, D3DMC performs better than AFX-IC (dark gray curves).
For the highest resolution of 7646 vertices D3DMC clearly
outperforms AFX-IC (light gray curves). Here the strength of
the spatial clustering in D3DMC (solid curves) causes only
slightly higher distortions at identical bit-rates for higher reso-
lutions, while the AFX-IC bit-rate (dashed curves) depends
directly on the mesh resolution.

This behavior can also be identified in the visual compari-
sons of Figure 7. Here, the first row shows the reconstruction
results for the lowest resolution with 498 vertices, which
shows a higher error distribution for D3DMC. In the other
resolution cases, D3DMC performs better and in the bottom
row of Figure 7, blocking artifacts are visible for AFX-IC,
while the results of D3DMC still show smooth reconstruction
results even at the lower bit-rate of 86,4 kBit/s in comparison
to 128,1 kBit/s for AFX-IC.

IV. SUMMARY AND FUTUR WORK
We have presented a coding scheme for dynamic time-
consistent 3D meshes. The mesh coding algorithm processes

the mesh sequences using of Groups of Meshes (GOMs) with I
and P meshes similar to video coding. For I mesh coding, 3D
mesh compression (3DMC) for static meshes is used. For effi-
cient P mesh coding we subtract two consecutive meshes or
keyframes in case of a coordinate interpolator representation.
One is a decoded mesh available at encoder and decoder and
the other mesh is the currently to be coded one. The residual
from this subtraction is passed to a clustering algorithm obtain-
ing substitute differential motion vectors to exploit spatial sta-
tistical dependencies. Finally, these substitute motion vectors
are coded arithmetically, using CABAC for efficiency.

In the experiments we have shown, how the proposed pre-
dictive coder performs in comparison to 3DMC, yielding
coded sequences of only 10-20% with the same quality com-
pared to 3DMC. A larger GOM-size decreases the bit-rate fur-
ther, as presented for the synthetic Chicken sequence. For
compression of the P meshes, we have shown comparisons to
state-of-the-art AFX-IC for different keyframe distances and
mesh resolutions. Here, D3DMC shows improvements espe-
cially for lower bit-rates. For different mesh resolutions,
D3DMC guarantees higher compression efficiency for higher
mesh resolutions compared to AFX-IC, due to spatial cluster-
ing.

Figure 7. Original mesh (left) and reconstruction error and error distribution
using AFX-IC (middle) and D3DMC (right), Humanoid sequence
Top row: 498 vertices, AFX-IC: 22,7 kBit/s, D3DMC: 23 kBit/s

Middle row: 1940 vertices, AFX-IC: 60,1 kBit/s, D3DMC: 62,7 kBit/s
Bottom row: 7646 vertices, AFX-IC: 128,1 kBit/s, D3DMC: 86,4 kBit/s

One drawback of the proposed coding scheme is the use of
heuristic thresholds for the clustering step, which is planned to
be replaced by a rate-distortion-optimized version. Moreover,
additional predictions within the octrees and between octrees
as well as additional external contexts for CABAC could fur-
ther improve performance. Finally, it should be noted that the
P meshes in our work can be extended towards B meshes in

analogy to H.264/MPEG4-AVC [10] and that the AFX-IC
scheme could be seen as a strict subset of such B meshes fea-
turing only the temporal direct motion vector prediction mode.
Hence, a combination of AFX-IC with our approach and a fur-
ther extension will be subject to future work.

ACKNOWLEDGMENT
We would like to thank Microsoft for providing the Chicken

Crossing sequence (© Copyright 1996, Microsoft Corporation. The
Chicken character was created by Andrew Glassner, Tom McClure,
Scott Benza, and Mark Van Langeveld. This short sequence of con-
nectivity and vertex position data is distributed solely for the purpose
of comparison of geometry compression techniques.).

We would also like to thank Alexandru Salomie from Vrije Uni-
versiteit Brussel for providing the Humanoid sequence.

REFERENCES
[1] M. Alexa and W. Müller, “Representing Animations by Principal

Components”, Proc. of EUROGRAPHICS 2000, vol. 19, no. 3, pp. 411-
418, 2000.

[2] N. Aspert, D. Santa-Cruz, T. Ebrahimi, “MESH: Measuring errors
between surfaces using the Hausdorff distance”, Proc. of the IEEE
International Conferende on Multimedia and Expo, ICME2002, vol. I,
pp. 705-708, 2002.

[3] P. Cignoni, C. Rocchini and R. Scopigno, “Metro: Measuring Error on
Simplified Surfaces”, Computer Graphics Forum, vol. 17, no. 2, pp.
167–174, 1998.

[4] S. Gumbold, W. Strasser, “Real Time Compression of Triangle Mesh
Connectivity”, Computer Graphics Proceedings, Annual Conference
Series, (Proc. of ACM SIGGRAPH 98), pp. 133-140, 1998.

[5] D. Huttenlocher, G. Klanderman and W. Rucklidge, „Comparing Images
Using the Hausdorff Distance”, IEEE Journal of Pattern Analysis and
Machine Inteligence, vol. 15, no. 9, pp. 850-863, 1993.

[6] L. Ibarria and J. Rossignac, “Dynapack: space-time compression of the
3D animations of triangle meshes with fixed connectivity”, In:
Proceedings of the 2003 ACM SIGGRAPH/ Eurographics Symposium
on Computer Animation, pp. 126–135. Eurographics Association, 2003.

[7] ISO/IEC JTC1/SC29/WG11 “Animation Framework eXtension Core
Experiments Description”, Doc. N6988, Hong Kong, China, 2005.

[8] ISO/IEC JTC1/SC29/WG11 “Information Technology - Coding of
Audio-Visual Objects. Part 2: Visual; 2001 Edition”, Doc. N4350,
Sydney, Australia, 2001.

[9] ISO/IEC JTC1/SC29/WG11, “ISO/IEC 14496-16/PDAM1”, Doc.
N6544, Redmond, WA, USA, 2004.

[10] ITU-T Recommendation H.264 & ISO/IEC 14496-10 MPEG4-AVC,
Advanced Video Coding for Generic Audio-Visual Services, 2003.

[11] Z. Karni, C. Gotsman, “Compression of soft-body animation
sequences”, Elsevier Computer & Graphics 28, pp. 25-34, 2004.

[12] J. Lengyel, “Compression of Time Dependent Geometry”, Symposium
on Interactive 3D Graphics, pp. 89-95, 1999.

[13] D. Marpe, H. Schwarz and T. Wiegand, “Context-Based Adaptive
Binary Arithmetic Coding in the H.264/MPEG4-AVC Video
Compression Standard”, IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 620-636, 2003.

[14] J. Rossignac, “Edgebreaker: Connectivity Compression for Triangle
Meshes”, IEEE Trans. on Visualization and Computer Graphics, vol. 5,
no. 1, pp. 47-61, 1999.

[15] A. Shamir, V. Pascucci, “Temporal and Spatial Level of Details for
Dynamic Meshes”, Proc. Of Virtual Reality Systems and Techniques,
pp. 423-430, 2001.

[16] J. Zhang and C. B. Owen, “Octree-based Animated Geometry
Compression”, DCC’04, Data Compression Conference, Snowbird,
Utah, USA, pp. 508-517., 2004.

