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ABSTRACT
A spatially adaptive image deblurring algorithm is presented for
Poisson observations. It adapts to the unknown image smoothness
by using local polynomial approximation (LPA) kernel estimates
of varying scale and direction based on the intersection of conÞ-
dence intervals (ICI) rule. The signal-dependant characteristics of
the Poissonian noise are exploited to accurately compute the point-
wise variances of the directional estimates. The results show that
this accurate pointwise adaptive algorithm signiÞcantly improves
the image restoration quality.

1. INTRODUCTION

In many imaging systems the recorded observations have the phys-
ical meaning of numbers of detected photons. The photons are
counted at different spatial locations and in this way form an im-
age of an object. This sort of scenario is typical for many imaging
problems in medicine, including positron and single-photon emis-
sion tomography, in gamma astronomy, microscopy, and photon-
limited optical imaging. The Poisson distribution is the conven-
tional probabilistic model for the random number of photons de-
tected during an exposure time. An important consumer applica-
tion where Poissonian distributions dominate are the widespread
CCD/CMOS-sensor digital cameras (e.g. [13]).

An optical blurring is typically introduced into the observation
process. This distortion of the image is commonly modeled by
the convolution (y ~ v)(x) of the true image y with the point-
spread function (PSF) v of the optical system. It is assumed that
the observations z(x) are Poissonian, according to the model

z (x) ∼ P ((y ~ v) (x)) , (1)
where P denotes the Poisson distribution. This model means that
E{z(x)} = (y ~ v)(x) and σ2z (x) = var{z(x)} = (y ~ v)(x).
Thus, the observation variance σ2z (x) is signal dependent and,
consequently, spatially variant. In our approach we make explicit
use of this variance function to reconstruct the image y from the
noisy observations z. Observe that (1) can be rewritten in the addi-
tive form z (x) = (y ~ v) (x)+ η (x), where the noise term η (x)
has zero mean and variance σ2η (x) = (y ~ v) (x).

1.1. Maximum likelihood (ML) inverse
Since the random observation z has a Poisson distribution with the
mean E{z(x)} = (y~ v)(x), the corresponding log-likelihood is
L = log(l) =

X
s
[−(y ~ v)(xs) + zs log((y ~ v)(xs))], (2)
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where the term log(zs!) independent of y is omitted. Then, the
maximum-likelihood gives the estimate of y as �y(x) = maxy L.

The solution of the inverse Poisson problem can be obtained
using the recursive Richardson-Lucy algorithm [1]. Usually the
problem is ill-conditioned and the solution is unacceptably noisy.
Different regularization or damping techniques are used to im-
prove the reconstruction (e.g. [12],[14]).

1.2. LocalML Poisson inverse
A local version of the likelihood is different from (2) by the win-
dow function wh(x) =w (x/h) and can be presented in the form

Lh=
X

s
[−(y ~ v)(Xs) + zs log((y ~ v)(Xs))]wh(x−Xs),

where the scale parameter h deÞnes the degree of localization of
the likelihood [2]. Assuming further that a locally constant model
is used for the convolution y ~ v, we arrive to

Lh(x,C) =
X

s
(−C + zs logC)wh(x−Xs). (3)

Then theML estimate of C has the form
�Ch(x) = (z ~ gh)(x), gh(x) = wh(x)/

P
ξ wh(ξ),

where �Ch(x) is the nonparametric Nadaraya-Watson estimate for
(y~v)(x). If �Ch(x) is found, the estimate of y (with notation �yh)
is a solution of the linear equation

(�yh ~ v)(x) = �Ch(x).
In the frequency domain, using capital letters for the Fourier trans-
form F of the corresponding variables, it gives

V (f) �Yh(f) = Gh(f)Z(f). (4)
Thus, we arrive to the linear inverse problem having as an input
the estimate �Ch(x). The unknown �Yh(f) is a solution of the lin-
ear system (4). Because ill-conditioning (Z is noisy), this sort
of systems is commonly solved by regularization, as �Yh(f) =
V (−f)Gh(f)Z(f)/(|V (f)|2+ε2). Remind that the conditioning
of (4) is deÞned by the convolution kernel gh. In general, depend-
ing on the local smoothness of the original data y and the local
variance of the noise η, different values of scale parameter h may
be appropriate for different regions of the image. Our algorithm
described further uses LPA [2] kernels gh to Þlter the observations
and is based on application of the ICI [6, 7] directly to the estimate
�yh in order to select a pointwise-adaptive value h+ of the scale h.

We remark that, mostly because of their lower complexity and
good stability, also linearWiener Þlters have been used extensively
for the restoration of blurred images with Poissonian and, more
generally, signal-dependant noise (e.g. [3],[11]).



Fig. 1. Directional LPA-ICI regularized Wiener inverse algorithm.
In the Þrst line of the ßowchart the RI estimates are calculated for a
set of scales and directions, the ICI is used to obtain the pointwise
optimal scale directional estimates that are then fused into the �yRI
estimate. In the second line the RWI estimates are calculated using
�yRI as a reference signal in Wiener Þltering, again ICI and fusing
are performed to obtain the Þnal �yRWI estimate.

2. LINEAR INVERSEWITH DIRECTIONAL ADAPTIVE
LPA-ICI FILTERING

This algorithm uses the non-parametric regularized inverse (RI)
and regularized Wiener inverse (RWI) LPA-ICI deconvolutions de-
veloped for the Gaussian inverse in [8],[9] and for inverse halfton-
ing (colored noise) in [5]. We brießy review here the general out-
line of the original algorithm; details of its implementation for the
Poissonian case are given in the following subsections.

The RI-RWI algorithm is a two stages procedure where the
Þnal estimate of y is given by the RWI deconvolution scheme that
uses the regularized inverse (RI) estimate as a reference signal.
In both steps the directional LPA-ICI [9, 4] technique is exploited
in order to construct in a pointwise manner an anisotropic non-
paremetric estimate of the signal. The algorithm is illustrated in
Figure 1. For the AWGN case, η ∼ N ¡0, σ2¢, the Þltering was
performed completely in the Fourier domain as

�Y
RI

h,θ(f) =
V (−f)Gh,θ(f)
|V (f)|2 + ε21 Z(f), (RI), (5)

�Y
RWI

h,θ (f) =
V (−f)|Y (f)|2Gh,θ(f)
|V (f)Y (f)|2 + ε22 σ2 Z(f), (RWI), (6)

where ε1, ε2 > 0 are regularization parameters. The adaptive pro-
cedure assumes that the estimates {�yRIh,θk}h∈H are calculated ac-
cording to (5) for a set of scales H and a number of directions
{θk}Kk=1 and the ICI rule selects the best scales for each direc-
tion and for each pixel. The Gh,θ in the above formulas cor-
respond to a collection of directional varying scale LPA kernels
gh,θ . In this way we obtain the directional adaptive-scale esti-
mates �yRI

h+(x,θk),θk
, k = 1, . . . ,K, which are fused by a convex

combination into the Þnal one �yRI . This �yRI serves as the reference
signal, instead of y, in the RWI procedure (6) (see Figure 1). The
adaptive RWI algorithm is similar and gives the ICI adaptive-scale
estimates �yRWI

h+(x,θk),θk
for each direction and x. Then, the Þnal

anisotropic estimate �yRWI is obtained again by a convex fusing of
these directional estimates.

Let us brießy remind the ICI optimal scale selection rule [6, 7].
Given a set of varying scale kernel estimates {�yhj(x)}Jj=1 with in-
creasing scale, we determine a sequence of conÞdence intervals
Dj = [�yhj (x)−Γσ�yhj , �yhj (x)+Γσ�yhj ], where Γ>0 is a thresh-
old parameter. The ICI rule can be stated as follows: Consider the
intersection of conÞdence intervals Ij=Tj

i=1Di and let j+ be the
largest of the indexes j for which Ij is non-empty, Ij+ 6=∅ and

Ij++1 =∅. Then, the adaptive scale h+ is deÞned as h+ = hj+
and the adaptive-scale kernel estimate is �yh+(x).

We remark that the use of the ICI rule requires the calcula-
tion of the standard deviations of the individual varying scale di-
rectional estimates {�yRIh,θk}h∈H and {�yRWIh,θk

}h∈H . In the AWGN
case, these standard deviations were easily calculated by the l2-
norm of the frequency response of the corresponding Þlters:

σ�yRI
h,θk

= σ

°°°° VGh,θ
|V |2+ε21

°°°°
2

, σ�yRWI
h,θk

= σ

°°°° V |Y |2Gh,θ
|V Y |2+ε22 σ2

°°°°
2

.

For the Poissonian case there are some modiÞcations. The
main problem is that, as the observation variance σ2z (x) is not con-
stant, the standard deviations of the directional estimates are spa-
tially varying. It makes to compute a pointwise-varying variance
for each of the estimates. Secondly, some change in the form of
the Wiener denominator is required, with the constant σ2 replaced
by a correct estimate of the Poissonian noise power spectrum.

In order to calculate all these elements efÞciently, a mixed
space/frequency domain approach is exploited. Let us start from
the regularized inverse stage.

2.1. Poissonian RI inverse
The actual regularized inversion is performed in the frequency do-
main, and then the LPA Þltering is performed as a convolution of
the pure regularized inverse zRI against the LPA kernel gh,θ in the
spatial domain:

T RI (f) =
V (−f)

|V (f)|2 + ε21 , tRI = F−1(T RI ) , (7)

zRI = F−1 (T RIZ) , �yRIh,θ = z
RI ~ gh,θ. (8)

Estimation of the standard deviation of theRI-LPA estimates (need-
ed for the ICI adaptive scale selection and for the fusing of the
directional adaptive-scale estimates) is also calculated in a mixed
frequency/space domain. The variance of �yRIh,θ is obtained as

σ2�yRI
h,θ
= F−1¡F ¡(tRI ~ gh,θ)2¢ ·Σ2

z

¢
, (9)

where Σ2
z = F

¡
σ2z
¢
is the Fourier transform of the space-varying

variance of z. Here σ2z is estimated directly from the noisy obser-
vations, i.e. �σ2z = z and Σ2

z = Z. This is the simplest possible
unbiased estimate of the variance, accordingly to the Poissonian
rule E {z} = var {z}.

All the varying scale estimates {�yRIh,θ}h∈H obtained for each θ
are fed (together with their standard deviations {σ�yRI

h,θ
}h∈H) into

the ICI algorithm, which selects the pointwise-adaptive optimal
scale h+(x, θ). This is done independently for each direction θ.
In this way, the adaptive-scale directional estimates �yRI

h+(x,θk),θk
,

k = 1, . . . ,K, are constructed.
Fusing these directional estimates is done using the inverse

variances as weights in the convex combination

�yRI (x) =
X

k
λRIk(x)�y

RI
h+(x,θk),θk

(x), (10)

λRIk(x) = σ
RI−2
k (x)/

X
i
σRI−2i (x),

σRI−2i (x) = 1/σ2�yRI
h+(x,θi),θi

(x) .

The Þnal estimate of the RI stage is the anisotropic �yRI . The ani-
sotropy of this estimate is a direct consequence of the adaptive
selection of an optimal scale for each direction.

The use of the space domain convolutions (8) and (9) instead
of multiplications in Fourier domain can speed-up calculations sig-



niÞcantly, since the support of the directional LPA kernels gh,θ is
usually very small. Moreover, this choice allows more freedom
in the handling of the boundary conditions. Observe that the for-
mula for the variance (9) can be rewritten easily in the standard
convolution form σ2�yRI

h,θ
=
¡F−1 (T RIGh,θ)

¢2 ~ σ2z .
2.2. Poissonian RWI inverse
The regularized Wiener inverse algorithm proceeds similarly:

T RWI (f) =
V (−f)|Y (f)|2

|V (f)Y (f)|2+ ε22Φη(f) , t
RWI = F−1(T RWI ), (11)

zRWI = F−1(T RWIZ) , �yRWIh,θ = z
RWI ~ gh,θ. (12)

Here, Φη is the power spectrum of the noise. It can be shown
that for Poissonian observations Φη is constant and equal to the
spatial mean of E {z} over the image domain. As E {z}=y ~ v
is unknown, its value may be estimated as �yRI ~ v. However,
since E {η (x)}=0, we simply set Φη =meanx(z). This is an
accurate approximation ofmeanx(E {z}) for large size images.

The Þnal fused estimate of the RI stage, �yRI , is used quite nat-
urally as a �pilot� estimate in the Wiener Þltering. It means that
|Y |2 in (11) is replaced by |�Y RI |2.

Similarly to the regularized inverse stage, also the standard
deviations of the RWI-LPA estimates are calculated in mixed fre-
quency/space domain. Again, the variance of �yRWIh,θ is obtained as

σ2�yRWI
h,θ
= F−1¡F ¡(tRWI ~ gh,θ)2¢ · Σ2

z

¢
.

In this second stage, σ2z is estimated more accurately than in the
previous one (in order to get a better estimate for Σ2

z), from the
regularized inverse estimate: �σ2z = �yRI ~ v ' y ~ v = σ2z .
Then, the ICI rule selects the pointwise-adaptive-scale estimate
�yRWI
h+(x,θ),θ

(x), for every x, and for each speciÞed direction θ.
The fusing procedure is performed exactly as for the RI, with

�yRWI (x) =
X

k
λRWIk (x)�y

RWI
h+(x,θk),θk

(x),

λRWIk (x) = σ
RWI−2
k (x)/

P
iσ

RWI−2
i (x), and σRWI−2i (x) = 1/σ2

�yRWI
h+(x,θi),θi

(x).

The Þnal output of the two-stage Poissonian RI-RWI is the ani-
sotropic adaptive estimate �yRWI .

2.3. Comments
In general, the regularized inverse and regularized Wiener inverse
are linear Þlters which actually are not appropriate to the problem
with the varying signal dependent observation variance. In par-
ticular, even the ideal Wiener Þlter, which is obtained by setting
ε22 = 1 in (11) and by using the �oracle� estimates for |Y | andΦη ,
achieves quite a poor performance, as shown in Figure 3(right).
Main reason is that the Wiener Þlter itself is not able to produce
a global estimate Þtting nonstationary varying-variance observa-
tions. However, the directional RI and RWI Þlters generate sets of
estimates rich enough to select from, and the ICI efÞciently per-
forms this adaptive selection.

This scale selection produces an important stabilizing effect
for the algorithm overall. Indeed in (3) we assume a locally con-
stant model for y~v. The ICI rule enables this hypothesis because
the zero order LPA for y means that this signal is nearly constant
in the adaptive-size window wh+ . In this way, the adaptive scale
selection allows to replace the nonlinear estimate by a switching
set of linear ones of different scales.

The anisotropic fusing (10) of these adaptive estimates for var-
ious directions yields a remarkable improvement in the restoration
[4, 9]. Experiments show that the zero-order hypothesis can be
relaxed and higher order Þlters gh can be more efÞcient.

The presented algorithm can be modiÞed further, so to be used
for restoration from signal-dependant noises other than the Poisso-
nian one. Moreover, if the randomness of the noise is particularly
high, the Þrst stage can be executed once or more times again in
order to reÞne the estimate of σ2z by using a feedback mechanism
similar to the one recently exploited for adaptation of the variance
for photon-limited denoising in [10].

3. NUMERICAL EXPERIMENTS
In our simulations, in order to achieve a desired level of random-
ness (i.e. desired SNR) in the noisy Poissonian observations, we
Þrst multiply the true signal yTRUE (which has range [0,1]) by a
scaling factor χ > 0: y = χ · yTRUE , z ∼ P(y ~ v). Thus,
E{z} = σ2z = χ·yTRUE~v, andE{z}/std{z} = √χ

√
yTRUE ~ v,

i.e. better BSNR (SNR of the blurred observation against its expec-
tation) corresponds to larger χ.

We present a �translation� to the Poissonian case of a common
deblurring experiment considered by many authors for the Gaus-
sian case (e.g. [8], [9], and references therein), where the Cam-
eraman image is heavily blurred by a 9×9 �boxcar� uniform PSF.
The PSF v is assumed to be known. We create a noisy Poisso-
nian distributed observation with a BSNR=32.5dB. It corresponds
to selecting χ=17600. Despite such a large value of χ, the non-
uniformity of the noise is still a quite an essential issue for the
Poisson deblurring, as the following simulations show. The actual
values of the standard deviations σz are in the range of [0, 0.0075]
(assuming that the image is renormalized back to the range [0, 1]).
It is interesting to note that this level of randomness is as much
as what can be observed in images taken with a consumer-level
CMOS1 sensor under normal light conditions.

The proposed RI-RWI adaptive algorithm is implemented with
the following parameters. As in [9], a set of eight directions,
{θk}8k=1 = {0, π/4, π/2, . . . , 7/4π} and Þve scales, #H = 5,
are used. Function estimation kernels were designed on conically-
supported windows choosing the Þrst and zero LPA orders for the
RI and RWI stages, respectively. For smaller scales inH the kernel
support is a 1-pixel-width line. The ICI thresholds and regulariza-
tion parameters for the RI and RWI, are ΓRI = 1.5, ΓRWI = 1.4,
ε1 = 0.03 and ε2 = 0.28.

Figure 2 shows details of the blurred Poisson noisy observa-
tion and the reconstructed Cameraman image. The reconstruction
is visually quite good, with most of the details properly restored
and no signiÞcant distortions. The objective values of ISNR and
RMSE are given in Table 1. Figure 4 shows the adaptive scales
selected by the ICI for a vertical direction from the RI and a hori-
zontal direction from the RWI stage of the algorithm. It is remark-
able how these scales reveal the features of the image across the
corresponding direction.

To demonstrate the signiÞcant improvement arising from our
modiÞed algorithm, we compare it against the standard Gaussian
version [9]. First, we restore the image applying the algorithm in a
straightforward manner, estimating the noise using aMAD estima-
tor (it gives constant �σ = 0.0045), and using the standard param-
eters that were optimized for the Gaussian case. Second, we tune
the parameters, in order to compensate to the wrong noise model

1Raw data from Nokia 6600 camera phone.



Algorithm ISNR RMSE
Poissonian LPA-ICI RI-RWI 6.61 0.0428
Optimized Gaussian LPA-ICI RI-RWI 6.03 0.0458
Gaussian LPA-ICI RI-RWI [9] 5.38 0.0493

Table 1. MSE and ISNR (dB) for Cameraman image for Poisson
image reconstruction.

Fig. 2. Deblurring the Cameraman image. Left is a fragment of
the noisy blurred observation (BSNR=32.5dB). Right is the recon-
structed image obtained by the proposed Poissonian adaptive de-
convolution algorithm, ISNR=6.61dB.

Fig. 3. Result of the pure regularized inverse zRI from (8) (left)
and the �oracle� Wiener estimate, ISNR=5.22dB (right).

Fig. 4. Adaptive scales: RI h+( · , π/4) (left), and RWI h+( · , 0)
(right). Darker color represents smaller scales.

assumed by algorithm, trying to obtain the best possible restora-
tion. Results are shown in the Table and in Figure 5. Numerically,
both results obtained by the Gaussian algorithms are worse than
the one obtained with the algorithm speciÞcally designed for the
Poissonian data. Comparing images in Figure 5 we may note the
enhancement obtained by the parameter optimization. A further
comparison with the reconstructed image in Figure 2(right) ob-
tained by the algorithm developed for the Poissonian data demon-
strates an obvious visual advantage of the proposed algorithm.

Fig. 5. Filtering the Poisson data with the algorithm developed for
the Gaussian one. Standard selection of the algorithm parameters
gives a poor estimate, ISNR=5.38dB (left). Up to some extent, it
can be improved by manually optimizing some algorithm parame-
ters, ISNR=6.03dB (right).
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