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ABSTRACT

Image processing techniques and Computer Aided Diagno-
sis (CAD) systems have proved to be effective for the im-
provement of radiologists’ diagnosis. In this paper an au-
tomatic system detecting lung nodules from Postero Ante-
rior Chest Radiographs is presented. The system extracts a
set of candidate regions by applying to the radiograph three
different and consecutive multi-scale schemes. The com-
parison of the results obtained with those presented in the
literature show the efficacy of our multi-scale framework.
Learning systems using as input different sets of features
have been experimented for candidates classification, show-
ing that Support Vector Machines (SVMs) can be success-
fully applied for this task.

1. INTRODUCTION AND MATERIALS

The chest radiography is by far the most common type of
procedure for the initial detection and diagnosis of lung can-
cer, preferred to more sensitive and precise techniques such
as MRI or CT; this is due to its non-invasivity character-
istics, radiation dose and economic considerations. Sev-
eral studies (e.g., [1]) list and explain all the factors that
may affect the technical production of the radiographic im-
age and its correct diagnostic interpretation. When radiol-
ogists rate the severity of abnormal findings, large inter-
observer and intra-observer differences occur. Impressive
results describing both diagnosticians’ error rate and the pa-
tients’ mortality have been reported by several studies (e.g.,
[2]), that also demonstrate the potentiality of early diagno-
sis improvement, suggesting the use of computer programs
for radiographs analysis. These are the main reasons why in
the last two decades a great deal of research work has been
devoted to the study of systems aimed to lung nodules de-
tection, and a wide variety of them have been already pro-
posed and reviewed in [3]. The systems proposed usually
start by segmenting the lung area, then they process it in or-
der to increase the visibility (also called conspicuity) of the
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nodules. Rule based schemes exploiting the main nodule
characteristics are then employed to extract all the regions
that may contain nodules; since the cardinality of the can-
didate nodules set thus created is always high, the next step
employs rule based system and learning machines to dis-
card the false positives without losing the true nodules. At
the state of the art most of the recent experiments employ
several different versions of Neural Networks (NN), with
different architectures and using different inputs. Since the
difficulty at the basis of all the learning schemes presented
is the high number of false positives extracted some meth-
ods have been presented [4], which extract less candidates
but lose too many true positives, leaving the problem open.

In this paper we describe the algorithm and the results ob-
tained by the method used to extract a first set of candi-
date nodules and classify them. The classification was per-
formed experimenting both NN, with several architectures,
and SVMs, with different kernels and different settings of
their parameters. Since true and false positives were greatly
unbalanced, we applied a cost-sensitive approach to improve
the sensitivity of the classifiers. We present only the re-
sult obtained with SVMs since they are the most robust and
promising.

The method has been tested on a standard database acquired
by the Japanese Society of Radiological Technology. It con-
tains247 radiographs:154 containing lung nodules and93
of patients with no disease. The images have2048 × 2048
pixels (digitized at a resolution of0.165mm pixel size), and
4096 grey levels. The diameter of the nodules ranges from
5 to 35mm. All the nodules in the images have been classi-
fied according to the difficulties encountered in their detec-
tion by the radiologists. They have been divided in5 classes
ranging from obvious to extremely subtle. The algorithms
for the segmentation, the enhancement and the candidate
extraction work on images down-sampled to a dimension
of 256 × 256 pixels (referred as theOriginal Imagesin the
following). This size has been chosen experimentally to re-
duce the computational costs without worsening the perfor-
mances. The features used as input for the learning systems
are calculated on the images reduced to512× 512 pixels.



2. CANDIDATE NODULES EXTRACTION

The algorithms described in this section are applied to a
lung area segmented by our algorithm, described in [5]. At
the state of the art several lung segmentation algorithms
have been proposed, but none of them is optimal for the
task of lung nodule detection since they do not include in
the area of interest the bottom of the chest and the region
behind the heart, where lung nodules may still be present.
Moreover they are often based on several assumptions about
the position and orientation of the thorax in the image. The
algorithm developed as the initial step of our system detects
both thevisible lung area(i.e. the one commonly defined),
and the parts of the thorax usually excluded (thenot visi-
ble lung area); furthermore it works under no assumption.
A detailed description of the results obtained and the com-
parison with other methods presented in the literature are
reported in [5], proving that this is a very good initialization
step for a CAD system aimed at lung nodules detection.

The use of a multi-scale framework to extract the nodules
is due to the fact that they are characterized by different
sizes, different grey levels and contrast characteristics. We
think that a multi-scale approach is the missing part of the
methods presented in the literature: they are able to high-
lights nodules with characteristics that belong to a limited
range, which is related to the shape of the operators used
to enhance and detect them. The scheme developed pro-
duces several smoothed version of theOriginal Imageby
convolving it with gaussian filters whose standard devia-
tion, s, takes values in the range2 − 12, according to the
minimum and maximum possible pixel size of the nodule
radius. For each scale,s, we then subtract from theOrigi-
nal imageits smoothed version, to get a resultingDifference
imagewhere the details visible at that scale are enhanced.
Since the distribution of grey levels in a nodule sub-image
can be approximated by a gaussian, the result of subtract-
ing to a nodule sub-image its smoothed version is usually
an image with a positive peak in the central part of the nod-
ule, and negative values in the neighborhood. Indeed, the
histogram of theDifference Imageshows that most of the
pixels take negative values while, on the set of positive val-
ues, a peak can always be identified. We create a binary
image by selecting all the pixels with a value bigger than
the one corresponding to the peak; these pixels correspond
to the details that can be identified at the scales. Summing
up all the binary images obtained at different scales we get
the Sum Image(left of fig.1), where the nodules appear as
regions with circular shape of different sizes, characterized
by the highest grey levels at the center and surrounded by a
much darker ring; these areas are extracted by applying the
procedure described below for all the possible radius values
r = [2, 12], and combining the results. With the fixed radius
r, it calculates for each pixelP (x, y) a coefficientPr(x, y)

Fig. 1. Sum Image - subtle nodule behind the diaphragm.
Regions Image - extremely subtle nodule

which measures the contrast between a circular region with
centerP (x, y) (and radiusr) and its surrounding:
Pr(x, y) = AV G(Circr(P (x, y)))−AV G(Rgr(P (x, y)))
whereAV G(X) is the mean of the grey values of the pix-
els inside a generic regionX; Circr(P (x, y)) is the re-
gion composed by the pixels contained in the circle of ra-
diusr and centered inP (x, y); Rgr(P (x, y)) is the region
composed by the pixels in the2-pixel-thick ring around the
Circr(P (x, y)). Note that the thickness of the ring is fixed
to 2 for every radius, since what allows to identify a circular
region is a darker ring surrounding it, no matter which is the
thickness of the ring itself.

To select the pixels which are potential nodule centers, we
automatically define a threshold on the set of the coefficients
{Pr(x, y)}, by means of the algorithm described by Kapur
in [6], thus obtaining abinary image. For each connected
region in it, we calculate the circularity and the biggest di-
agonal,D, of the minimum ellipse containing the region
itself. Thecircularity is defined as the fraction of the area
of the region contained in the circle with the same area and
centered in the center of mass, and the area of the circle it-
self. We then discard a candidate either if its circularity is
lower than 0.5 orD is bigger than2∗r. The regions left cor-
respond to the candidate nodules with radiusr. Repeating
the procedure for every possible radius we obtain a set of
11 binary imagesB(r), each containing a set of candidate
nodules. All these images are then combined to determine
the final set of candidates. First, all the regions appearing
in only one of thebinary imagesare taken as candidates.
For the others the following procedure is employed: when
two regions,X andY , belonging toB(r1) andB(r2) (r1

andr2 being two consecutive radius values) intersect, their
unionU is at first considered. If the biggest diagonalD of
the minimum ellipse containing it is less than2 ∗ r2, thenU
is taken as representative; otherwise we calculate the means:
MX = 1

|X|
∑

p∈X Pr1 and MY = 1
|Y |

∑
p∈Y Pr2

and take as representative region the one with the higher
value. We then build a grey level image, calledRegions im-



age(right of fig.1), by assigning to each pixel in each candi-
date region the valueG(x, y) = maxr∈[2,12](Pr(x, y)) and
then scaling it in the range[0, 255].

With this extraction scheme we get a set of31100 regions
on the247 images of the database, with an average of about
125 regions per image and only5 true positives lost out of
154. These results have been compared with those of the ex-
traction schemes tested on the same database and reported
in [7] and [8]. The first method has been applied only to
thevisible lung areadefined by [9], bringing to a loss of13
true positives, out of154, even before the candidate extrac-
tion. The result of the extraction scheme is a set of33000
candidates and a loss of other8 true positives, for a total
of 21 nodules lost at this step. We implemented the second
method obtaining really poor results. In terms of number of
candidates obtained at this first stage it can be also pointed
out that we use a lung area that is about1.5 times bigger
than the one commonly considered, and this has some influ-
ence on the cardinality of the obtained set.

To reduce the number of the extracted candidates we cal-
culated several features and perform a statistical analysis to
select a set of16 most representative ones; their efficacy is
proved by the fact that their combination by means of simple
rules can discard more than22000 candidates. The draw-
back of a rule based system are the empirically set thresh-
olds used by the rules, which necessarily bring to a lack of
robustness with respect to different databases. For this rea-
son we experimented different learning machines such as
NN and SVMs, using as input the same set of16 features.
In the following we will describe just the experiments with
the SVMs which gave the most promising results. The set
of features computed for each region is composed of:
¦ thetwocoordinates of its center of mass,
¦ three features describing the position of the region with
respect to thevisibleandnot visible lung area(see [5]),
¦ six features describing its shape,
¦ the mean grey level of the pixels of the region in the ra-
diograph down-sampled to512× 512 pixels,
¦ two features are the mean and the maximum value of the
grey level of the pixels in theRegions image,
¦ twodifferent methods [5] have been used to obtain two es-
timates of the most characteristic radius value associated to
the region; they are based on the coefficientsPr(x, y) com-
puted for each pixel and each radius value.

Note that these features are based on the values computed
by the extraction scheme; this is due to the observation of
the strong dependency between the regions obtained and the
algorithm used to extract them. It’s a novelty with respect
to the methods presented in the literature.

3. CANDIDATES CLASSIFICATION WITH SVMS

The very unbalanced candidate set obtained (30951 False
Positives plus149 True Positives) led us at experiments em-
ploying SVMs to discard the biggest number of False Posi-
tives. In this context we indeed need to obtain a high sensi-
tivity in order to detect all the positive examples, without a
significant loss in specificity, because from a medical point
of view it is crucial to detect all the Positive examples, but at
the same time we need to significantly reduce the number of
False Positives. For these reasons all the results were judged
on the basis of their sensitivity and specificity. With SVMs,
lowering the decision threshold, we may increment the sen-
sitivity at the possible expense of a decreased specificity.
Hence, to better understand the behaviour of the classifiers,
we performed aROCanalysis, to jointly evaluate in a syn-
thetic way the sensitivity and specificity of the SVMs.

Considering that the data set is very unbalanced (composed
of 149 True Positives and30951 False Positives), for train-
ing and testing positive-enriched data sets were built, by
considering separately Positive and Negative examples. We
randomly split the available Positive data in89 examples for
training and60 examples for testing according to a train/test
ratio equal to3/2. From the set of negative data we ex-
tracted without replacement a number of negative examples
equal to five times the number of positive data, both for the
training and the test set, obtaining respectively89×5 = 445
negative examples for the training set and60×5 = 300 neg-
ative examples for the test set. We randomly repeated the
above process10 times, obtaining10 pairs of training and
test sets and we normalized the components of the data vec-
tors to0 mean and unitary standard deviation. We experi-
mented SVMs with linear, polynomial and gaussian kernels,
varying the regularizationC parameter between0.001 and
1000, the degree in polynomial kernels between2 and6 and
the “width” (σ parameter) in gaussian kernels between0.01
and 10000. Using the ten pairs of training and test sets,
we computed the mean and standard deviation of the error,
as well as the sensitivity and specificity with respect to the
test sets. The experiments generally gave poor results with
all the models: even if the average test error generally ob-
tained is quite good (on the average it’s equal to0.11) and
the specificity is high (on the average it’s equal to0.96),
the corresponding sensitivity is very low (between 0.39 and
0.49 in the models with the lowest test error). Moreover,
the best sensitivity value achieved is equal to0.53, with a
value of the specificity slightly lower. We run the same ex-
periments but using different and more complicate sets of
features and obtained even worse results. In order to under-
stand the reasons why the SVMs failed to separate positive
from negative examples, we analyzed the real-valued dis-
criminant function computed by the SVMs and we ranked
the outputs of the SVMs on the test data. In this way low-



ering the threshold of the corresponding decision function
we may increment the sensitivity at the expense of a lower
specificity. Unfortunately the specificity obtained with a
threshold set to obtain a sensitivity equal to1 is very low:
about0.11 on the average in the best case, and in most cases
it also lower. This fact means that the ranking of many pos-
itive examples is very low; in other words, it seems that
the SVMs “strongly believe” that many positive examples
are negative. This may be due to an “intrinsic ambigu-
ity” of the data: examples classified as positive or negative,
may not significantly differ with respect to the extracted fea-
tures. This suggested to run new experiments using a bigger
amount of training data; note that increasing the cardinality
of the training data necessarily causes a larger unbalance
between positive and negative examples. Ten pairs of train-
ing test sets were formed in the same way as before, with
the same number of True Positive data, but using a positive
versus negative ratio equal to1/30, hence obtaining respec-
tively 89×30 = 2670 negative examples for the training set
and60×30 = 1800 negative examples for the test set. Even
though, in this case, the SVMs can learn from more exam-
ples, the best sensitivity achieved is equal to0.32, meaning
that the training set is probably too unbalanced.
To overcome this problem other experiments were run using
the same unbalanced training and test sets, but introducing
a cost-sensitive approach to improve the sensitivity of the
SVMs. In classification problems the0/1 loss function is
usually applied, which weighs equally errors on both posi-
tive and negative examples. In medical problems the cost of
misclassifying positive (diseased) patients is usually higher
than misclassifications of negative (healthy) patients. In the
framework of the SVM optimization problem we may in-
troduce regularization parametersC+ andC− to be able to
adjust the cost of misclassifications of false positives ver-
sus false negatives (see [10]). In the experiments presented
here we fixedC− = C andC+ = C×Cf , whereC andCf

are respectively the regularization parameter and the cost-
factor; we run experiments whereCf was set equal to2, 5,
10, 20, 50, 100, so that training errors on positive exam-
ples outweigh errors on negative examples. We achieved a
significantly higher sensitivity with respect to the previous
approaches. With relatively low values ofC (C < 0.01)
and quite large values of the cost factorCf (Cf ≥ 50), we
obtained sensitivity equal or larger than0.90 and specificity
equal about to0.70.
Fig. 2 shows the ROC curves of cost-sensitive and standard
polynomial SVMs for five different splits of the training and
test sets: cost-sensitive SVMs show better sensitivity and
specificity compared with those of standard SVMs. Similar
results are obtained with linear and gaussian kernels (data
not shown).
These results are promising, even if probably not sufficient
for clinical pre screening of chest radiographs. Their com-

parison with the results obtained using more complicate sets
of features showed that better performances may be ob-
tained using proper selected set of features; to this end we
plan to experiment with cost-sensitive SVMs using feature
selection methods to extract subsets of more informative
features.
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Fig. 2. Comparison of ROC curves in standard and cost-
sensitive SVMs.


