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ABSTRACT

This paper presents a distortion optimized streaming algorithm for
on-demand streaming of multimedia. Given the pre-encoded pack-
ets of a multimedia stream, we propose a fast algorithm for selecting
an appropriate subset of these packets such that the overall client dis-
tortion is minimized. This minimization is performed within the rate
constraints imposed by the communication channel. In particular, at
each transmission opportunity, the proposed approach uses a linear-
time algorithm to select the best packet to transmit through the min-
imization of the expected client distortion. The time complexity of
the algorithm is reduced through a factorization of the streaming
policy into simpler terms and performing a greedy optimization to
select the packet. Inevitably, this in itself leads to sub-optimal re-
sults. To alleviate the adverse impact of the greedy optimization,
the cost function is penalized with the expected buffer occupancy
at the end of the epoch of the optimization. We pose this problem
as a Lagrangian minimization. We demonstrate the efficacy of the
proposed approach through empirical evaluation.

1. INTRODUCTION

The current Internet has originally been designed for handling
delay-tolerant applications, such as file transfer, and packet loss is
generally recovered by retransmission. Even if media streaming
applications generally induce very strict delay constraints, there is
no guarantee that the network packets arrive at destination on time.
Multimedia delivery systems (e.g. [3, 4, 5]) attempt to alleviate the
impact of these short-comings of the channel within the stringent de-
lay constraints associated with the packets of a multimedia stream:
They propose packet transmission policies that take into account the
dependencies between the packets of the media stream, and the vari-
ations in the source coding rate.

An alternate way to address the network unreliability is to
stream the multimedia data over a reliable transport protocol, such
as TCP [1], where packets that are lost or delayed are automatically
re-transmitted by the transport protocol. The use of such a reliable
transport protocol, on the other hand, poses its own challenges on the
bandwidth utilization. The congestion avoidance mechanism used
by TCP to ensure that the link bandwidth is shared in a fair man-
ner causes fluctuations in the available bandwidth to any one user.
This paper presents a fast distortion optimized streaming algorithm
that determines the subset of packets of a multimedia stream that
should be selected for transmission, taking into account the vary-
ing throughput of the channel. While the streaming algorithm of [1]
performs well in terms of its rate-distortion performance, its compu-
tational complexity is exponential in the horizon of the optimization.
We suitably alter it, in order to significantly reduce the complexity
of the streaming system. The novel approach proposed in this paper
still performs competitively in terms of distortion, but the compu-
tational complexity now increases only linearly with the horizon of

the optimization.
We espouse the abstraction of the multimedia encoding process

proposed in [3], and similarly cast the streaming problem as a La-
grangian optimization. However, the very problem under consid-
eration is quite different. While [3] addresses the minimization of
the expected distortion under an aggregate rate constraint for mul-
timedia streaming over loss prone networks, the approach proposed
here addresses the minimization of the expected distortion, under
an instantaneous rate-constraint for communication over a variable
bit-rate, reliable channel. We demonstrate through simulations that
the proposed greedy optimization achieves similar performance to
the algorithm of [1], while using a fraction of the computational re-
sources. In addition, it is observed that the performance of the pro-
posed approach is far superior to that of a naı̈ve distortion agnostic
streaming algorithm.

2. MEDIA STREAMING MODEL

This section describes our model of the media streaming process and
introduces the notations used throughout this work.
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Fig. 1. Notations used throughout this work. The plot above de-
picts the size of the various packets in the encoded multimedia. The
x−axis denotes the time line, typical realizations of the various time
quantities used in this work are depicted on the x−axis.

We tackle the scheduling of pre-encoded media packets over a
reliable but variable available rate network. We define the stream-
ing schedule T = [t0, t1, . . . , tK ] consisting of times tk at which
the server runs an optimization algorithm to determine the subset of
encoded packets to be transmitted. We model the dependencies be-
tween encoded packets of a media stream by a directed acyclic graph
(DAG) where the nodes represent the packets and the directed links
denote the packets’ dependencies. If the decoding of any packet l is
contingent on the successful decoding of some other packet l′, we
call l′ an ancestor of l and denote it by l′ � l. Associated with each
packet l of a media stream is its size Rl, in bytes, and the decrement

0-7803-9134-9/05/$20.00 ©2005 IEEE II-181



in distortion if it is successfully decoded at the client, ∆dl. Denote
the distortion incurred if the client does not receive packet l by d0,l.
Thus, if packet l is successfully decoded, the incurred distortion is
d0,l −∆dl, else it is d0,l. Also associated with packet l is its decod-
ing deadline, td,l, which is the time by which the packet must have
arrived at the client for successful decoding. We denote the time of
arrival of packet l by ta,l. Figure 1 illustrates the notations. Note
that in Figure 1 at time tk, packet l cannot be scheduled for transmis-
sion because its decoding deadline td,l has passed (i.e. td,l < tk).
Also, packets l+1, l+2 and l+3 are selectable for transmission but
packet l + 2 is expected to not arrive before its decoding deadline
(i.e. td,l+2 < ta,l+2).

3. DISTORTION OPTIMIZED STREAMING

In this section we briefly revisit the distortion optimized streaming
algorithm proposed in [1], and cite the short-comings of the ap-
proach proposed therein.

The transmission of any packet l is achieved with a transmis-
sion policy πl – the decision that packet l should not be trans-
mitted is denoted as πl = 0, and πl = 1 denotes the decision
that packet l should be transmitted. At scheduling opportunity tk,
tk ∈ T , the encoder selects the packets to be scheduled for trans-
mission from a set Sk = {l : td,l > tk} of packets whose de-
coding deadlines have not yet elapsed. The streaming policy vector
π = [πlk πlk+1 . . . πL], of length L− lk + 1, is a concatenation of
the decision variables πl for each packet l ∈ Sk in ascending order,
where lk = min{l : l ∈ Sk} (the packet with the earliest decoding
deadline greater than tk) and L = max{l : l ∈ Sk} (the last packet
of the presentation).

Each of the 2L−lk+1 values of π induces an expected distortion
E(D(π)). In its simplest incarnation, the algorithm of [1] selects
the policy vector π that minimizes E(D(π)), which can be written
as:

E(D(π)) =
�
l∈Sk

{d0,l − πl∆dlP (l is decodable)} (1)

Owing to the prohibitive computational complexity associated with
the minimization of Equation (1) over the 2L−lk+1 possible values
of π, the approach of [1] limits the horizon of the optimization to
m packets, i.e. π = [πlk . . . πmk

], where mk = lk + m − 1
and the computational complexity reduces to 2m. Further, in this
case Sk = {l : lk ≤ l ≤ mk}. Limiting the horizon, however,
leads to a greedy optimization. To alleviate the impact of this, the
cost function in Equation (1) is augmented with a buffering penalty
term which stipulates that the expected decoder buffer occupancy
E(B(td,mk

))1 at time td,mk
, the decoding deadline of packet mk, is

greater than or equal to a predefined threshold B0. This is achieved
through a Lagrangian optimization, with the minimization of the
augmented cost function expressed as

min
π

J(π) = min
π

E(D(π)) − λkE(B(td,mk
)). (2)

The Lagrange multiplier λk is altered through the course of the
streaming session as: λk = λk−1 + γ(B0 − B(tk)), where γ is
a small number.

The expected buffer occupancy at time td,mk
is expressed as

follows. Note that at time td,mk
all the packets that are currently

residing in the decoder buffer, and those that will be transmitted in

1The expressions for E(B(td,mk
)) proposed herein are slightly differ-

ent from those presented in [1].

the current optimization epoch would have been either consumed,
or discarded if they arrived after their respective decoding dead-
lines, because ∀l ≤ mk, td,l ≤ td,mk

. Thus if we denote by the
random variable X[tk,td,m

k
] the cumulative channel throughput in

the interval [tk, td,mk
], the expected decoder buffer occupancy at

time td,mk
is the excess data over �

l∈Sk
πlRl (the amount of data

that will be communicated to the decoder under the current policy
π and also consumed before td,mk

). Denote the event L = true
if X[tk,td,m

k
] > �

l∈Sk
πlRl and L = false otherwise. Then

E(B(td,mk
)) = E(X[tk,td,m

k
]I(L)), where I(L) = 1 if the

Boolean expression L is true, and zero otherwise.
Finally, the computation of various quantities such as the prob-

ability that a packet will arrive before its decoding deadline or the
number of bytes the network will deliver in a given time interval
requires a mathematical model of the available channel throughput.
We assume that this throughput is adequately modeled as an auto-
regressive, moving average stationary process with Gaussian inno-
vation. The validity of this model for real Internet traffic traces on
time scales of a few seconds has been verified in [2, 6]. The channel
is modeled as a discrete-time system with a sampling interval of Ts

seconds. In our model, the channel communicates xkTs bytes of
data in the time interval [kTs, (k + 1)Ts], where xk is the available
channel bandwidth in the kth time step. The cumulative throughput
of the channel X[kTs,(k+r)Ts] in the interval [kTs, (k+r)Ts], r > 0
is written as:

X[kTs,(k+r)Ts] ∼ N ((µ+(1−αr+1)
∞�

i=1

αi−1nk−i)rTs, β(r)σ2T 2
s ),

(3)
where β(r) = � r

j=1(1 − αj)2.

4. SINGLE PACKET TRANSMISSION POLICY

We note that even for modest values of m (the horizon of the op-
timization) the search space for the solution (2m policies) is quite
large. In this section we make greedy approximations to the cost
function in Equation (2) to reduce the search space for the trans-
mission policy π. In particular, we are interested in determining a
single packet transmission policy for transmission at time tk. Once
the packet to be transmitted is selected and communicated to the de-
coder, the optimization is run again at time tk+1 to select a packet
for transmission, taking into account the updated estimates of the
channel and the decoder buffer occupancy. Thus, the transmission
schedule Tk in this case is itself a function of the channel rate.

A naı̈ve solution to the single packet transmission policy prob-
lem is to restrict the m × 1 policy vector π to the form π(l) = 1
for some l ∈ Sk and π(l) = 0 ∀ l ∈ Sk, l 6= l. The number of
policies over which the search need be performed in this case is m.
This search can be accomplished directly by computing Equation
(2) for each of the m policies, and selecting the minimizing argu-
ment. However, such an ad − hoc approximation will inevitably
lead to poor results, owing to the fact that an arbitrary subset of m
policies of the 2m policies is being sampled. In the sequel, we de-
vise a single packet transmission policy based on an approximate
factorization of the cost function in Equation (2) through a parti-
tioning of the policy vector π. As we shall see, the solution to the
factorization yields a policy π of length lρ − lk + 1 which is of the
form πl = 0 ∀lk ≤ l < lρ, and πlρ = 1, which differs from the
naı̈ve policy in only its length (lρ − lk + 1 as opposed to m).

The approximate factorization of Equation (2) is achieved in
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three steps: (1) First, without any loss of generality, we rewrite
the cost J(π) as the sum of two simpler cost functions J1(π

1) and
J2(π

2), where π = [π1 | π2] is the concatenation of the vectors π1

and π2, and π1 has a specific form (detailed in the ensuing discus-
sion), (2) Next, we make the greedy approximation that the mini-
mization of J(π) over π is approximately equal to the minimization
of J1(π

1) over π1 and J2(π
2) over π2, and (3) We argue that since

we are interested in a single packet transmission policy, the opti-
mization over J2(π

2) is immaterial to the problem at hand. It is
crucial to note that the only approximation we make is in step (2)
above. Next, we provide the details of each of the steps mentioned
above.
Step 1:
Consider the partitioning of the policy vector π as π =
[πlk :lρ |πlρ+1:mk

], for some lρ, lk ≤ lρ ≤ mk. Policies πlk:lρ(= π1

in the notation above) and πlρ+1:mk
(= π2 in the notation above)

are abbreviations for the policies [πlk . . . πlρ ] and [πlρ+1 . . . πmk
],

respectively. We restrict πlk:lρ to a single packet transmission pol-
icy of the form π(l) = 0 ∀ lk ≤ l < lρ and π(lρ) = 1, i.e. πlk :lρ

is of the form [0 0 . . . 1]. We make no restrictions on the form of
πlρ+1:mk

. Thus, for any arbitrary policy π, there exists a lρ such
that π can be represented as π = [πlk:lρ | πlρ+1:mk

]. Thus, without
any loss of generality, we can re-write Equation (2) as an optimiza-
tion over πlk:lρ , πlρ+1:mk

and lρ. Note that given lρ, πlk :lρ is fixed
as defined above. Thus, Equation (2) can be written as

min
π

J(π) = min
lρ,πlρ+1:m

k

�
J1(πlk:lρ) + J2(πlρ+1:mk

|πlk:lρ)� ,

(4)
where J1 and J2 are defined as follows. Note from Equation (1)
that the expected distortion E(D(π)) is additive over the packets
l, {l : lk ≤ l ≤ mk}. Thus, E(D(π)) = E(D(πlk:lρ)) +
E(D(πlρ+1:mk

|πlk:lρ)). Further, the buffer penalty in Equation (2)
can be written as B(td,mk

) = B(td,lρ) + ∆B(td,mk
|lρ). Thus we

partition J(π) as J1 and J2, where J1(πlk:lρ) = E(D(πlk :lρ)) +
B(td,lρ) and J2(πlρ+1:mk

|πlk:lρ) = E(D(πlρ+1:mk
|πlk:lρ)) +

∆B(td,mk
|ρ).

Step 2:
To devise the greedy single packet optimization policy, we make
the greedy approximation that the joint optimization over lρ and
πlρ+1:mk

in Equation (4) is close to the optimization of J1 over
lρ and the optimization of J2 over πlρ+1:mk

, i.e.,

min
π

J(π) ≈ min
lρ

J1(πlk:lρ)+ min
πlρ+1:m

k

J2(πlρ+1:mk
|πlk :lρ), (5)

where the optimization of the first term is over lρ of the single packet
transmission policy πlk:lρ , and the optimization of the second term
is over πlρ+1:mk

assuming knowledge of πlk:lρ . Equation (5) is the
approximate factorization of Equation (4), and is the key step in the
derivation of the single packet transmission policy.
Step 3:
Further note that once the first term of Equation (5) has been mini-
mized over lρ to select the single packet transmission policy πlk:lρ ,
the optimization of J2 need not be performed. Instead of perform-
ing the minimization of J2 to determine πlρ+1:mk

, running the op-
timization at time tk+1 after transmitting the selected packet from
πlk:lρ would have the added advantage of having a more reliable
estimate of the available channel bandwidth.

Thus, substituting the expressions for the expected distortion
and the expected buffer occupancy from Section 3, and simplify-
ing the ensuing expressions, we get the single packet transmission

policy as the minimization

min
lρ

J1(πlk:lρ) = min
lρ

�
l∈Sk,lρ

d0,l − πlρ∆dl

× P (ta,lρ ≤ td,l)Πl′�lρπl′I(ta,l′ ≤ td,l′) − λE(X[tk,td,lρ
]I(L)).

(6)

where Sk,lρ = {l : lk ≤ l ≤ lρ}. Since lk ≤ lρ < mk, it can only
take one of m values. The optimization is thus performed directly
by searching for the lρ which minimizes Equation (6).

This concludes our discussion on the single packet transmission
policy. We note that the proposed simplifications, while making a
greedy approximation, reduce the search space of the optimization
of Equation (2) from 2m to m.

4.1. Probability Approximations

In this section we derive the various stochastic quantities inherent to
our scheduling algorithm.

Consider the arrival time ta,lρ of packet lρ scheduled for trans-
mission at time tk in Equation (6). Owing to the stochastic nature of
the channel, the arrival time ta,lρ will be a random variable. We are
interested in P (ta,lρ ≤ td,lρ), the probability that packet lρ arrives
at the decoder prior to its decoding deadline td,lρ . The probability
P (ta,lρ ≤ td,lρ) is equivalent to the probability that X[tk,td,lρ

], the
throughput of the channel in the interval [tk, td,lρ ], is greater than
Rlρ , i.e., P (ta,lρ ≤ td,lρ) = P (X[tk,td,lρ

] ≥ Rlρ). In practice,
tk and td,lρ are seldom integral multiples of Ts as is warranted by
Equation (3). We appropriately amend the equations to take the ef-
fect of discretization into account.

Also, the expected buffer occupancy E(X[tk,td,lρ
]I(L)),

I(L) = 1 if X[tk,td,lρ
] ≥ Rlρ and I(L) = 0 otherwise, is given as

– E(X[tk,td,lρ
]I(L)) = � ∞

Rlρ

xpX(x)dx, where pX(x) is the pdf

of X[tk,td,lρ
], given in Equation (3). With these quantities as given,

the search for the minimizing lρ in Equation (6) is performed by
substitution of the m values lρ can take.

Lastly, we make simplifying approximations to the above prob-
abilities to aid computation. Succinctly, we approximate the pdf of
Equation (3) as the Dirac-delta function pX(x) = δ(x−x0), where
x0 = (µ + (1 − αr+1)�∞

i=1 αi−1nk−i))(td,lρtk) is the mean
throughput in the interval [tk, td,lρ ] of the channel conditioned on
time tk (from Equation (3). As a consequence of this approxima-
tion,

P (ta,l ≤ td,l) =
1 if Rlρ ≤ x0

0 if Rlρ > x0
. (7)

Further, the expected buffer occupancy (from Equation (6)) is given
as

E(X[tk,td,m
k
]I(L)) =

x0 − Rlρ if Rlρ ≤ x0,
0 if Rlρ > x0.

(8)

With these approximations in place, the server only needs to main-
tain a time averaged estimate of the mean available bandwidth.
While performing the optimization, it uses Equations (7) and (8)
to make the comparisons with the related quantities, thereby further
reducing the computational complexity of the proposed approach.

5. EXPERIMENTAL RESULTS

Simulations were run on 160 seconds of the Jurrasic Park se-
quence at 30 fps [7] encoded at 256 Kbps using the MPEG-4 al-
gorithm in the IBBPBBP... format with a GOP size of 13 video
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frames. The parameter Ts in the simulations was set to 20ms, α
was set to 0.98, and the desired buffer level B0 was set to the aver-
age size of 1 GOF. The standard deviation σ in Equation (3) was set
such that the standard deviation of the available bandwidth was 30
Kbps (the mean available bandwidth was varied from 172 Kbps to
258 Kbps). Thus, the σ interval, over which the bandwidth fluctu-
ates most often is approximately 100 Kbps, or roughly between 1/2
and 1/3 the mean transmission rate. The results were averaged over
multiple realizations of the channel to obtain statistically meaning-
ful results.

We compare the performance of four systems: System 1: Dis-
tortion agnostic ad-hoc scheme – Denote the ratio of the average
size of an I,P and B packet as g1 : g2 : g3. The ad-hoc scheme
operates as follows. If at any time t during streaming, the client
buffer occupancy B(t) is greater than the threshold B0, all of the
I,P and B packets are transmitted. If on the other hand B(t) <

g1+g2

g1+g2+g3
B0, subsequent B-frames are skipped until B(t) ≥ B0.

Similarly, if B(t) < g1

g1+g2+g3
B0 subsequent P-frames are skipped

until B(t) ≥ g1

g1+g2+g3
B0. System 2: Distortion-buffer optimized

streaming [1] This system computes the streaming policy π using
the algorithm proposed in [1]. The horizon of the optimization was
set to 26 packets, or 2 GOFs. Thus, the streaming policy was se-
lected from among 226 policies using the ISA algorithm proposed
in [3]. System 3: Single packet transmission policy – This system
used the proposed fast policy selection approach detailed in Sec-
tion 4. The horizon of the optimization was set to m = 26 pack-
ets, or 2 GOFs. At each transmission opportunity, the best single
packet transmission policy was selected through the minimization
of Equation (6). System 4: Single packet transmission policy us-
ing probability approximation This system is identical to System 3,
with the exception that the probability approximation of Section 4.1
was used instead of the actual probabilities. All the systems were
implemented in MATLAB, it was noted that Systems 3 and 4 re-
quire approximately 1/60th the computation of System 2, thereby
providing a 60 fold improvement in computational complexity.

Figure 2 depicts the PSNR vs. rate plots of the four systems.
As expected, the performance of the distortion optimized transmis-
sion policy [1], taking the rate-distortion characteristics of the video
packets and the channel state into account is superior to that of the
other systems. More importantly, as can be seen from the Figure, the
performance of the proposed approach is within a fraction of a dB of
the distortion-optimized policy. This in our opinion, combined with
the fact that the proposed approach provides a multi-fold reduction
in computational complexity, demonstrates the efficacy of the pro-
posed work. Further, there is a miniscule loss in performance when
using the proposed probability approximation as opposed to using
the actual probabilities. This helps in a reduction of the quantities
that a streaming server need calculate. Lastly, the performance of
the proposed approaches (System 3 and System 4) is far superior to
that of the distortion agnostic naı̈ve streaming approach, especially
at low bit-rates.

6. CONCLUSIONS

We have proposed a fast distortion-buffer optimization strategy for
selecting the transmission policy for multimedia streaming over a
reliable but variable bit rate channel. The main contribution of the
current work is the approximate factorization of the cost function
J(π) through a partitioning of the policy π. The efficacy of the pro-
posed single packet transmission policy was demonstrated through
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Fig. 2. PSNR vs. rate plot assessing the performance of the pro-
posed approaches (System 3 and System 4) as compared to the
Distortion-buffer optimized streaming policy approach of [1] and
the distortion agnostic naı̈ve approach.).

empirical evaluations. It was shown that the loss in performance as
compared to the optimized streaming policy [1], whose computa-
tional complexity is far higher than that of the proposed approach,
was minimal. We are currently compiling further simulation results
that evaluate the precise impact of the greedy factorization. The final
paper will contain further simulations addressing this issue.
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