
MULTIPLE BLOCKS UPDATE ALGORITHM FOR MATCHING PURSUIT VIDEO CODING

Jian-Liang Lin†∗, Wen-Liang Hwang†, and Soo-Chang Pei∗

∗Institute of Communication Engineering, National Taiwan University, Taiwan, R.O.C.
†Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

ABSTRACT

Matching pursuit (MP) video coding has been demonstrated
to attain a better coding performance than DCT-based video
coding in terms of PSNR and perceptual quality at very low
bit rates. However, because of its massive computational
complexity, the MP algorithm is usually only approximated.
By approximating a residual in a subspace, we propose a
multiple blocks search and update algorithm in MP video
coding to achieve a faster and better MP approximation.
In this paper, we evaluate the performance and compare it
to the traditional one-block search algorithms. The experi-
mental results show that our proposed algorithm can signif-
icantly improve the coding performance and encoding time.

1. INTRODUCTION

Matching pursuit, which is a frame-based algorithm, is a
promising method for low bit-rate video coding [5]An MP-
based codec yields a better PSNR and perceptual quality
than a transform-based codec and its decoder is simpler .
However, it cannot be used in applications that require real
time bidirectional communications because the encoder con-
sumes a massive amount of computational time. An MP
encoder does not obtain all the coefficients in one step, but
iteratively finds the frame coefficient that has the largest ab-
solute inner product value between a residual and all the
bases. The inner product value and the base from which
the value is obtained are called an atom. Many approaches
have been proposed to simplify the complex encoding stage.
One approach approximates the codewords of a dictionary
with a linear combination of simpler codewords so that the
computation becomes easier [7, 2, 6, 8].

The most popular approach for finding an atom is pro-
posed by Neff and Zakhor [5], in which a residual frame is
divided into blocks, and an atom is found within the block
with the largest amount of energy at each iteration. This
approach is modified in [1], in which an energy weight is
given to a block so that the greater the number of atoms
chosen from the block, the smaller the energy weight of the
block will be. Therefore, the block is less likely to be cho-
sen in later iterations. The energy weight approach reduces
the likelihood that most of the atoms will be selected from a

few blocks, and improves the PSNR performance over that
of Neff and Zakhor’s algorithm. The above algorithms find
an atom from the largest (weighted) energy block, we there-
fore call them one-block algorithms.

The one-block algorithm is simple and efficient at the
cost of sacrificing coding performance. Although coding
performance can be improved by finding an atom from more
than one block, there is still the issue of the massive number
of inner products between a residual and the bases in these
blocks. To solve this problem, we approximate a residual
in a subspace, spanned by a small number of bases within a
few blocks. The bases and the blocks are selected according
to the content of the residual, while the coding performance
and efficiency are determined by the number of bases and
the number of blocks. Our simulations show that our PSNR
and efficiency are better than in a one-block algorithm at
low bit-rates of various sequences.

2. MP UPDATE ALGORITHM AND ATOM
EXTRACTION

Matching pursuit is a frame-based algorithm that represents
a signal by a succession of greedy steps [4]. For each itera-
tion, the signal is projected to a base that approximates the
signal most efficiently. Let the over-complete image bases
be {gγ(x)}, where γ is the index. The matching pursuit al-
gorithm decomposes an image into a linear expansion of the
bases as follows.

The image f(x) is first decomposed into

f(x) =< f(x), gγ0(x) > gγ0(x) + Rf(x),

where gγ0(x) = arggγ(x) max{| < f(x), gγ(x) > |} and
Rf(x) is the residual image after approximating f(x) in the
direction of gγ0(x). The gγ0(x) and the inner product value
< f(x), gγ0(x) > are called an atom. The matching pursuit
algorithm then decomposes the residual image Rf(x) by
projecting it onto the bases, as was done for f(x). Instead
of recalculating the inner products at each iteration, Mallat
and Zhang [4] provide the MP update algorithm. At the kth
iteration, let:

gγk
= arg max

γ∈Γ
| < Rkf, gγ > |

0-7803-9134-9/05/$20.00 ©2005 IEEE

be the base of the largest absolute inner product value. The
new residual signal Rk+1f is

Rk+1f = Rkf− < Rkf, gγk
> gγk

.

The inner products between Rk+1f and the bases {gγ} can
be represented by

< Rk+1f, gγ >=< Rkf, gγ > − < Rkf, gγk
>< gγk

, gγ > .
(1)

Because < Rkf, gγ > and < Rkf, gγk
> have been cal-

culated in the previous iteration, and if < gγk
, gγ > is pre-

calculated, this update needs only one addition and multipli-
cation. Unfortunately, this update algorithm needs a huge
amount of space to store all non-zero < gγk

, gγ > in an
image and is only useful in an one-dimensional signal de-
composition.

For image decomposition by MP, because the number
of bases is huge, the complexity of applying the MP to the
entire image is too high. To overcome this problem, the
proposed approach in [5, 1] divides a residual into blocks,
and at each iteration, the MP is applied only to the block
with the largest energy. This approach is both simple and
efficient and has, therefore, been implemented in many MP-
based video codecs.

3. MULTIPLE BLOCKS APPROXIMATION

The approach in [5, 1] assumes that the probability of the
current largest energy block containing the maximum atom
is high. This assumption can be further developed with the
correlation between a block containing the maximum atom
and the energy of the block. Thus, the energy of a block can
be used to determine whether a block should be included in
the procedure to find atoms.

3.1. Blocks Selection

Let B be the set of blocks in which to search for atoms.
Before we propose our multiple block selection algorithm,
we present the optimal set of blocks for atom selection and
show the difficulties in obtaining the optimal set in practice.
For a block b, let P0(b) be the probability that the maximum
atom is not within b, and let P1(b) be the probability that the
block b contains the maximum atom. The miss probability
PM means that the block, containing the maximum atom, is
excluded from finding the atom:

PM (B) =
∑

b�∈B

P1(b). (2)

The false alarm probability PF means that an atom is found
in a block that does not contain the maximum atom:

PF (B) =
∑

b∈B

P0(b). (3)

We define the average performance loss of selecting a non-
maximum atom incurred by B as:

R(B) = PF (B)CF + PM (B)CM ,

where the non-negative numbers CF and CM are the respec-
tive average conditional performance losses when a false
alarm or a miss occur. From Equations 3 and 2, we can
derive that

R(B) =
∑

b∈B

P0(b)CF +
∑

b�∈B

P1(b)CM

=
∑

b∈B

P0(b)CF +
∑

b∈B

(1 − P1(b))CM

=
∑

b∈B

(P0(b)CF − P1(b)CM) +
∑

b∈B

CM

=
∑

b∈B

(P0(b)CF − P1(b)CM) + CM |B|. (4)

Let the optimal set B
∗ be the block set that minimizes the

above equation. Let B̃ be the set of blocks satisfying

B̃ = {b|P0(b)CF − P1(b)CM ≤ 0}. (5)

Equation 5 can be rewritten as

B̃ = {b|P1(b) ≥ τP0(b)}, (6)

where τ = CF

CM
. The likelihood of block b can be defined as

L(b) =
P1(b)
P0(b)

,

and Equation 6 becomes

B̃ = {b|L(b) ≥ τ}. (7)

Because any block in B
∗ must be in B̃, we have

B
∗ ⊆ B̃. (8)

The optimal block set B
∗ is too difficult to determine. Thus,

we propose the following ad-hoc procedure to construct the
block set B. This procedure is simple and has proven to be
effective in our simulations.

The correlation between the block containing the max-
imum atoms and the blocks with larger amounts of energy
is high. Therefore, at each iteration, we include the blocks
of relatively large energy levels into B. We normalize the
energy of the blocks at each iteration so that the block with
the largest energy becomes 1. A block b is assigned to B

according to its normalized energy ˜||b||2:

b ∈ B if ˜||b||2 ≥ η,

where 0 ≤ η ≤ 1 is a threshold. An atom is then chosen
from the blocks in B.

Fig. 1. After the base corresponding to the black hexagon
at the center of the gray area is selected, the inner products
with the bases covered in the gray area are updated. The
black dots are bases.

3.2. Block Content Approximation

Our approach is to approximate the content of a block in B

in a subspace spanned by a few MP bases. Let a block be
|s|2 pixels, and |D| be the size of the dictionary D. The
bases in a block are |s|2|D|. For computational efficiency,
we reduce the number of bases in a block to L. Figure 1
illustrates an example in which L = 2 and |B| = 10.

Our algorithm that multiple blocks and the MP update
is described below.

Multiple Blocks Update Algorithm

1. Initialization (k=0): The residual f is first divided
into blocks.If the normalized energy ||b̃||2 of the block
b is larger than a threshold 0 < η < 1, i.e.

||b̃||2 ≥ η, (9)

we assign the block to B and calculate the inner prod-
ucts between the residual and the bases of the block.
We then record the L bases {gb

γl
, l = 1, · · · , L} giv-

ing the largest absolute inner products and assign them
to BL.

2. Atom Extraction and Update of the Inner Prod-
ucts (at k-th iteration): Let gγkmax

be the basis that
gives the largest absolute inner product value. We
then update the non-zero inner products according to
gγkmax

and Equation 1.

3. Update of Block Set B: When an atom be extracted
from a block, the energy of some blocks may change.
For a block that is not in B, if it’s normalized energy is
larger than η, we include it in B. We then calculate the
inner products between Rk+1f and the bases within
this block, and record the L best bases, as we do in
Step 1.

4. Next iteration: k = k + 1. If k < n, then go to Step
2.

In the first phase, for each block in B we compute the in-
ner products of the block with all the bases, and from them
we select the L bases producing the L largest absolute val-
ues. Let BL be the union of the bases of all blocks. Be-
cause we assume that the approximating residual is in the
subspace spanned by BL, in the second phase we apply MP
to a residual with the restriction on the bases in BL. Each
block in the first phase obtains |s|2|D| inner product val-
ues. It takes a complexity of |s|2|D| to obtain the L largest
absolute inner products from them.

The first phase takes |s|2|D||B| inner products, and the
second phase takes at most |B|L inner products to obtain an
atom. If the non-zero inner products between bases in BL

are at most m ≤ |B|L and if a residual takes n iterations on
average, we perform

|s|2|D||B| + (n − 1)m

inner products to approximate a residual. To obtain a bet-
ter efficiency than the one-block algorithm, we require that,
after n iterations,

|s|2|D||B| + (n − 1)m < |s|2|D|n. (10)

The term n|s|2|D| is the total number of inner products that
find n atoms by using the one-block algorithm. Because the
number of bases of a block is much smaller than |s|2|D|,
we can use the MP update algorithm to update the inner
products at each iteration.

4. PERFORMANCE EVALUATIONS AND
COMPARISONS

We evaluated the performance of our algorithm and com-
pared it with the popular algorithms in [5, 1]. An MP atom
contains a base and an inner product value. The index of a
codeword is encoded by an adaptive arithmetic code. The
inner product value is encoded by a bit-plane based approach
and the position of a base is located by a quadtree and quadtree
representation [3]. Other different MP atom encoding meth-
ods can be used, but they change the average number of bits
to encode an atom ra. The first frame of a video sequence
is an intra-frame (I-frame), encoded by DCT, and all other
frames are inter-frames (P-frames), encoded by MP.

Table 1 shows the computing time taken to encode the
Akiyo sequence by various searching algorithms. In our
testing platform, the CPU speed is 2.4 GHz per second. Our
algorithm has three components: computing the inner prod-
ucts between a residual and bases (Tip); sorting the largest
L bases for each block (Tsort); and updating inner prod-
ucts for atom candidates (Tup). The computing time of each
component is also shown in the table. Our algorithm com-
putes inner products at the first iteration, and updates the
inner products at the following iterations. Because updat-
ing inner products is relatively faster than computing inner

Table 1. Elapsing time (sec) for encoding the Akiyo se-
quence by different methods. Our algorithms are in the third
and the fourth columns with L=100 and L = 400, respec-
tively.

Algorithm [5] [1] L=100 L=400

Total time 321.20 287.44 183.89 205.33

Tip 185.94 160.65 56.67 67.34
Tsort 9.23 7.76 2.85 3.51
Tup 0 0 3.45 15.43

0.7 0.8 0.9 1 1.1
32.3

32.4

32.5

32.6

32.7

encoding time

Y
−

P
S

N
R

[5]
[1]
L=100
L=400

(a) 24 Kbps

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
34.6

34.65

34.7

34.75

34.8

34.85

34.9

34.95

35

35.05

35.1

encoding time

Y
−

P
S

N
R

[5]
[1]
L=400
L=800
L=1200
L=1600

(b) 44 Kbps

Fig. 2. The plot of average computing time versus PSNR of
various.

products, the overall time of our algorithm is constrained by
Tip.

Figures 2 plots of shows the average time versus the
PSNR of various sequences at different bit-rates. Our se-
quences include the following slow motion sequences: Akiyo,
Sean, Miss America, Container, Mother and Daughter, Sales-
man, and the fast motion sequences: Carphone and Fore-
man. The PSNR performance of our method increases as
L increases. This implies that using more bases to approx-
imate a residual yields a better PSNR, but the overall com-
puting time increases. Figure 2 shows that overall comput-
ing time increases linearly as a function of L. The data in
Figure 2 (a) shows that our approach with L = 400 gives
the best average performance in terms of time and PSNR of
all methods at 24 Kbps. The PSNR gains with this parame-
ter (L = 400) over that of the Neff and Zakhor’s one-block
algorithm is on average of 0.4 dB. We normalize the com-
puting time of the Neff and Zakhor’s algorithm to 1, so that
the comparison will not be affected by the speed of the CPU.
The computing time of our algorithm with L = 400 is a fac-
tor of 0.7−0.8 of that of the one-block algorithms. Figure 2
(b) shows that for L between 800 and 1200, our method has
a PSNR gain 0.4 − 0.5 dB over that of Neff and Zakhor’s
one-block algorithm at 44 Kbps.

5. CONCLUSION

In contrast to the traditional approach, in which an atom is
chosen from the block with the largest (weighted) energy,
we approximate a residual in a subspace spanned by a few
MP bases. From this approximation, we obtain a new MP
atom finding algorithm that uses multiple blocks for atom
searching, and uses the MP update algorithm to update in-
ner product values. The simulations show that our proposed
algorithm outperforms one-block algorithms, in terms of
PSNR, as well as computing time. The performance of our
method depends on two parameters, namely: the number of
blocks and the number of bases in each block. Adaptation
of the parameters for different video sequences to achieve
the best performance is an issue worthy of further study.

6. REFERENCES

[1] O. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff, and
A. Zakhor, “Video compression using matching pur-
suits”, IEEE Trans. Circuits Syst. Video Technol., vol.
9, no. 1, pp. 123–143, Feb. 1999.

[2] P. Czerepiński, C. Davies, N. Canagarajah, and D. Bull
“Matching pursuits video coding: dictionaries and fast
implentation”, IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 10, no. 7, pp. 1103–1115, Oct. 2000.

[3] J.L. Lin, W.L. Hwang, and S.C. Pei, “SNR scalability
based on bitplane coding of matching pursuit atoms at
low bit rates: fine-grained and two-layer”, to appear in
IEEE Trans. Circuits Syst. Video Technol.

[4] G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries”, IEEE Trans. Signal Process-
ing,Vol. 41, pp. 3397–3415, December 1993.

[5] R. Neff and A. Zakhor, “Very low bit-rate video coding
based on matching pursuits”, IEEE Trans. Circuits Syst.
Video Technol., vol. 7, pp. 158–171, Feb. 1997.

[6] R. Neff and A. Zakhor, “Matching pursuit video
coding–part I: dictioanry approximation”, IEEE Trans.
Circuits Syst. Video Technol., vol. 12, no. 1, pp. 13–26,
Jan. 2002.

[7] D.W. Redmill, D.R. Bull, and P. Czerepinki, “Video
coding using a fast non-separable matching pursuits al-
gorithm”, Proc. IEEE Int. Conf. Image Processing., pp.
769–773, 1998.

[8] C. De Vleeschouwer and B. Macq, “Subband dictionar-
ies for low-cost matching pursuits of video residues”,
IEEE Trans. Circuits Syst. Video Technol., vol. 9, No. 7,
pp. 984–993, Oct 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

