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ABSTRACT
This paper presents a fast method to compute homeomor-
phisms between 2D lattices and shapes found in binary im-
ages. Unlike many other methods, this mapping is not re-
stricted to simply connected shapes but applies to arbitrary
topologies. Moreover, it provides an avenue to the embed-
ding of shapes in vectorspaces over R and C and thus en-
ables robust shape recognition.

1. INTRODUCTION AND MOTIVATION

Shape and silhouette provide significant cues for human vi-
sual perception. This has been documented in a vast and
venerable body of literature in cognitive psychology or bi-
ological neuroscience (cf. e.g. [12, 14, 15]). It is thus no
surprise that shape based approaches are popular in com-
puter vision, too [1, 7]. Our interest in shape analysis arose
from the fact that lately it has become the basis for many
methods in automatic gait classification (cf. e.g. [3, 13]).

The results presented here hence originate from work on
gait analysis. Dealing with automatic behavior recognition
in monitored real world environments, we were in need of
vision algorithms that allow a robust classification of shapes
that vary throughout consecutive frames of video data. In
addition, methods were required that perform in real time.

Well known shape representation techniques like mo-
ments, shocks, or shock graphs enable reliable retrieval from
large image databases [5, 10, 11]. However, concerning
noise corrupted shapes that almost inevitably will have to
be dealt with in video processing these methods come along
with lesser robustness or prohibitive computational costs.
In gait analysis, image patches containing shapes are often
donwsampled and treated as vectors [3]. This induces a cer-
tain overhead because the surroundings of a shape have to
be considered. Dealing with shapes only, topological rep-
resentations have been shown to cope well with shape dy-
namics. Florez et al. [4] champion the use of self organizing
neural gases [8] for modeling. Even though their technique
works well once a network has learned the topology of a
shape, it suffers from the considerably long learning phase
of the algorithm and thus does not comply with our real

time constraints. However, this powerful but costly neural
approach can be replaced by simple and fast methods from
computational geometry.

In the next section, we will present a rapid shape encod-
ing scheme that maps arbitrary shapes onto 2D lattices. Sec-
tion 3 will show that this approach leads to efficient and re-
liable shape recognition. Note that although this technique
was developed for gait analysis, it is generally applicable.
To underline this claim and for the sake of comparison, the
reminder of this paper will present results obtained on a
standard testbed for shape matching which was introduced
by Kimia et al.[10].

2. SHAPE ENCODING

Dealing with binary images, we assume a shape S to be a
set of L pixels, S = {pi ∈ R

2 | i = 1, . . . , L}. Under this
assumption, the following procedure computes an m × n
array of bounding boxes that can be thought of as a coarser
representation of a shape.

procedure bounding box splitting (S)
w ← width of bounding box B(S)
x← x coord. of left border of B(S)
for j ∈ {1, . . . , n}
Sj ← {p ∈ S | x ≤ px ≤ x + w/n}
h← height of B(Sj)
y ← y coord. of lower border of B(Sj)
for i ∈ {1, . . . ,m}
Sij ← {p ∈ Sj | y ≤ py ≤ y + h/m}
Bij ← B(Sij)
y ← y + h/m

x← x + w/n
return(B)

An illustration of this procedure and its result is shown
in Fig. 1. Obviously, the algorithm is linear in mn. It does
not require the computation of interpixel relations nor itera-
tive maximization (or minimization) steps but only relies on
linear search. Its average complexity is therefore O(mnp̂)
where p̂ denotes the average number of pixels in a box Bij .
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Fig. 1. The five steps of bounding box splitting: 1(a) compute the bounding box B(S) of a pixel set S; 1(b) subdivide it into n
vertical slices; 1(c) compute the bounding box B(Sj) of each resulting pixel set Sj where j = 1, . . . , n; 1(d) subdivide each
B(Sj) into m horizontal slices; 1(e) compute the bounding box B(Sij) of each resulting pixel set Sij where i = 1, . . . ,m.

(a) Grids of sizes 6 × 8, 13 × 16 and 26 × 32 on a shape of genus 0

(b) Grids of sizes 4 × 4, 9 × 8 and 19 × 16 on a shape of genus 2

Fig. 2. Shape descriptions resulting from bounding box
splitting cope with different topological structures; in each
of these examples m was chosen according to Eq. 1.

Moreover, as each box Bij can be understood as a gen-
eralized pixel of height hij and width wij at location xij ,
the storage requirement of a corse shape is a mere 4mn. For
small values of m and n bounding box splitting will thus be
fast and storage efficient.

Figures 2(a) and 2(b) show that already moderate m ×
n arrays produce fairly accurate representations. Table 1
summarizes measurements obtained from 266 shapes of an
average size of 17887 pixels. Given the height h and width
w of a shape’s initial bounding box, m was computed as a
function of n:

m(n) =

⌊

h

w
n

⌋

(1)

where bxc indicates rounding x ∈ R to the nearest lower
integer, i.e. bxc = sup{y ∈ N | y ≤ x}. The table lists
the average compression rate, the normalized Hamming dis-
tance D = dH(S,B)/L between a shape S and its coarse

n compression rate D σ2

4 99.9 % 0.532 0.0414
8 99.4 % 0.228 0.0054

16 97.4 % 0.103 0.0009
32 90.0 % 0.055 0.0002
64 59.2 % 0.038 0.0001

Table 1. Average compression rates, normalized Hamming
distances and variances obtained from bounding box split-
ting with n columns and m resulting from Eq. 1.

representation B as well as the variance of these distances.
While the compressions rate decreases slowly with a grow-
ing n, the reconstruction error decreases quickly. At a com-
pression rate of 90%, it already drops below 6%.

Therefore, even bounding box arrays of small sizes pro-
vide shape descriptions that are precise enough for most
video based applications. The runtime required for bound-
ing box splitting will thus be far from threatening real time
constraints. Furthermore, this simple method relying on ba-
sic computational geometry procedures is not restricted to
simply connected shapes or shapes that are homeomorph
to the unit circle. Figure 2 exemplifies how it performs
on shape with a genus greater than 0, i.e. on shapes with
holes. As the next section will show, this increases robust-
ness against shape distortions.

3. SHAPE RECOGNITION

Bounding box splitting realizes a homeomorphism between
2D shapes and 2D lattices: bounding boxes Bij below other
boxes will always have lesser lattice coordinates i, boxes
left of other boxes will always come along with lesser lattice
coordinates j and vice versa (s. Fig. 3). Due to this topol-
ogy preserving nature of the bounding box representation
of shapes, a consistent vector space embedding of shapes is



Fig. 3. A sample of k = 67 points on lattice of size 10× 16
and examples of how it is mapped onto different shapes.

straightforward1.
If v denotes the location of the bottom left corner of

the initial bounding box of S, w and h denote its width and
height and uij denotes the center of box Bij , then the coor-
dinates

µij =

(

(uij
x − vx)/w

(uij
y − vy)/h

)

(2)

provide a scale invariant representation of S. Sampling k
points of an m×n lattice therefore allows to represent S as
a vector

r = [µi(1)j(1)
x , µi(1)j(1)

y , . . . , µi(k)j(k)
x , µi(k)j(k)

y ] ∈ R
2k

where i(α) < i(β) if α < β and likewise for the index j.
As this embedding leads to vectors in [0, 1]2k, the Eu-

clidian distance between two shapes Sa and Sb can be scaled
by the maximum possible distance, leading to the normal-
ized shape distance

dE

(

ra, rb

)

= ‖ra − rb‖ /

(

∑

2k

12

)
1

2

(3)

such that 0 ≤ dE ≤ 1.
Apart from real vector spaces, the mapping between lat-

tices and shapes also enables complex vector space embed-
dings. To this end, we consider the center µ of the initial
bounding box of S and the centers uij of the boxes Bij and
compute complex numbers

zij = (uij
x − µx)/2w + i(uij

y − µy)/2h (4)

1Recent contributors to shape matching argued that geodesics in shape
spaces resulting from conformal mappings or Riemannian manifold em-
beddings are better suited for shape characterization [6, 9]. Of course, rig-
orous approaches like this are very appealing, but if it comes to speed and
simplicity, vector spaces have their merits; first and foremost they provide
access to some powerful techniques well established in pattern recognition
and machine learning.

which guarantee that Re(zij), Im(zij) ∈ [−1,+1]. Sam-
pling k points of an m× n lattice thus results in vectors

z = [zi(1)j(1), . . . , zi(k)j(k)] ∈ C
k.

For any two shapes Sa and Sb encoded by means of complex
vectors za, zb we can hence determine their Procrustean dis-
tance [2, 13]. With z∗ denoting the conjugate transpose of a
complex vector z, this common measure in statistical shape
analysis is given by

dP (za, zb) =

√

1−
z∗azbz

∗

bza

z∗azaz
∗

bzb

(5)

where we will always have 0 ≤ dP ≤ 1.
Note that while both embeddings are scale invariant,

they are not invariant against rotations. However, since our
interest in shapes originated from gait analysis, rotation in-
variance was not our primary concern (shapes of walking
people usually appear to be upright). In our experiments
conducted for this paper we therefore focused on natural,
unrotated shapes in the database collected by Kimia et al.

Table 2 shows examples of Euclidian and Procrustean
distances between shape vectors resulting from our method.
Each of the shapes shown in the table was mapped onto a
lattice of size 10 × 16. The figures in the first two rows of
each quadruple of rows result from sampling the 67 lattice
points indicated in Fig. 3. The first row in each quadruple
lists the normalized Euclidian distance in the correspond-
ing 134 dimensional real vectorspace; each second row de-
scribes the Procrustean distance in C

67. The third and fourth
row in each quadruple indicate the corresponding distances
after sampling the whole lattice. It is noticeable that shapes
of the same class have distances≤ 0.1 regardless of the type
of field and dimension of the corresponding vectorspace.
Distances between different classes vary between 0.1 and
0.42. Procrustean distances seem to be more accurate in the
sense that they are smaller for similar shapes and larger for
different classes of shapes. Note that that the four lower-
most shapes in the table have distorted boundaries. Never-
theless, our method yields reasonable distances.

As the maximum distance found in the table is 0.42,
shape vectors seem to occupy only a small volume within
the vectorspaces considered here. We thus investigated if
reliable shape classification is possible at all, that is if mean-
ingful boundaries between classes can be established. To
this end, we considered a total of 145 images showing 7
classes of animal shapes (birds, cats, dogs, dinosaurs, ele-
phants, fishes and rabbits). R

134 embeddings of 96 of these
shapes were used to train support vector machines with ra-
dial basis kernel functions. Applying the one against one
paradigm in training the classifiers and using a majority vot-
ing scheme for classification produced very accurate results.
Out of the 49 test shapes only two were misclassified, lead-
ing to a correct classification rate of 96%.
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Table 2. Exemplary distances between shapes. In each
quadruple of lines, the first line describes the normalized
Euclidean distance in R

134 and the second line lists the Pro-
crustean distance in C

67. The third and fourth line contain
the corresponding distances in R

320 and C
160, respectively.

4. CONCLUSION

This paper presented a simple computational geometry ap-
proach to compute homeomorphisms between shapes and
lattices. The proposed method copes with shapes of differ-
ent topologies, is storage and time efficient. Since the pro-
posed mapping is topology preserving, orders defined on
samples of lattice points lead to consistent vectorspace em-
beddings of shapes. Experimental results underline that real
or complex valued embeddings based on our approach are
robust against noisy shape boundaries. Moreover, applying
ensembles of support vector machines enables very accurate
shape classification.
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