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ABSTRACT

A major focus of video quality assessment research has been to

quantify the amount of blocking, blurring, and ringing impair-

ments. However, little attention has been paid to another impair-

ment common in motion-compensated video compression systems:

the addition of high frequency (HF) energy as motion compen-

sation moves blocking artifacts off block boundaries. In this pa-

per, we employ an energy-based approach to measure this motion-

compensated edge artifact (MCEA) impairment, using both com-

pressed bitstream information and decoded pixels. Experimental

results show that we can accurately estimate the percentage of this

energy in compressed video.

1. INTRODUCTION

Standardization bodies such as the Video Quality Experts Group

[1] have been coordinating research efforts towards designing an

efficient objective video quality metric. The goal is the automatic

prediction of perceived image and video quality. Video quality

metrics are used not only to assess the quality of reconstructed

video, but also for fine-tuning and design of video coding sys-

tems. Peak Signal-to-Noise Ratio (PSNR) and Mean-Squared Er-

ror (MSE) have seen widespread use as video quality metrics due

to their implementation simplicity and adequate performance. Un-

fortunately they do not take into account the perceptual charac-

teristics of the Human Visual System (HVS). Incorporating HVS

models into video quality metrics, as proposed in [2], is highly

desirable as previous research [3] has shown that the widely-used

PSNR metric cannot perform well in video sequences with signif-

icant luminance or texture masking.

No-reference metrics have access only to the reconstructed

video sequence and its bitstream. These metrics are universally de-

ployable, since they do not require access to the original sequence.

Subjective tests done with humans are typically used as the ground

truth to verify the results of an objective metric. It was shown in

[4] that a combination of carefully crafted expectations satisfied by

well-behaving metrics, in addition to a few small-scale subjective

tests, can identify poorly behaving video quality metrics. These

expectations included, among others, the ability to resolve the in-

crease in blurriness and the decrease in similarity as the Quantiza-

tion Parameter (QP) increases. Available metrics were unable to

recognize that visual quality degrades as the distance from the last

I-frame, d, increases.

Video quality is multidimensional. There are spatial and tem-

poral dimensions as discussed in [5]. In this work we treat the

spatial component of video quality. Visual quality spatial impair-

ment is mainly constituted by three components: Blocking, blur-

ring, and ringing. The estimation of those three components with

the help of HVS models was the scope of [2]. All three can be en-

countered in both compressed still images and compressed video.

Most research work on video quality assessment has concentrated

on measuring blocking and blurring.

These impairment components are not completely orthogonal

to each other. In [6] it was shown that the relative strength of one

component can influence the perceptual contribution of another

component. Research is still needed to characterize and quantify

these interactions. One approach to quality assessment involves

the use of HVS principles to determine a single value-index that

characterizes the overall video quality [7, 8]. An alternative is

to design metrics that assess a single impairment type, such that

the impact of multiple impairments can be subsequently combined

into a single quality value [9, 10].

In this work we adopt the second approach. The video qual-

ity metrics evaluation in [4] investigated the performance of state-

of-the-art blocking and blurring metrics, and pointed to inadequa-

cies of quality metrics when applied to motion-compensated video

codecs. The source of these problems are motion-compensated

edge artifacts (MCEA). The evaluated metrics were primarily de-

veloped for use with image codecs; thus they ignored this com-

ponent of visual impairment. The MCEA is a side effect of the

blocking impairment and motion-compensated prediction. Subjec-

tive tests in [4] showed that the perceptual effect of this unexplored

visual impairment was significant.

The paper is organized as follows: Section 2 defines motion-

compensated edge artifacts and discusses our motivation to design

a metric to measure this type of impairment. The proposed met-

ric is described thoroughly in Section 3. Experimental results are

presented in Section 4 and the paper concludes in Section 5.

2. DEFINITION AND MOTIVATION

Video quality is a function of four types of impairments: blocking,

blurring, ringing, and motion-compensated edge artifacts.

Blockiness arises from the vertical and horizontal edges along

a regular blocking grid that result from the block-based processing

in many image and video codecs. Coarse quantization yields more

blockiness, while edge-attenuating filters reduce its perceptual ef-

fect. In this study we concentrate on the 8 × 8 DCT transform

since it has seen widespread deployment in JPEG and MPEG.

Blurriness is caused by the removal of high-frequency con-

tent from the original image/video signal. Increased blurriness

can be caused by coarser quantization, edge-attenuating filters,

fractional-pixel motion compensation (MC) or overlapped block

motion compensation (OBMC).
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Ringing artifacts, also known as the Gibbs phenomenon, are

caused by the absence of high frequency terms from Fourier series

due to coarse quantization. Perceived as ripples and overshoots

near high contrast edges, they are most prevalent in wavelet coders.

Motion-compensated edge artifacts (MCEA) appear in video

codecs that use block-based MC prediction. When coarse quanti-

zation is combined with MC prediction, blocking artifacts propa-

gate from I-frames into subsequent frames and accumulate, caus-

ing structured HF noise that is no longer located at block bound-

aries. Fractional-pel MC and edge-attenuating filters can reduce

this artifact. By definition, the MCEA involves HF noise within the

blocks, while the blocking impairment involves HF noise along the

block boundaries. The artifacts were called “false edges” in [11].

(a) (b)

(c) (d)

Fig. 1. Visual example of propagating motion-compensated edge

artifacts in “foreman”. (a) I-frame, (b) P-frame d = 1, (c) P-frame

d = 6, (d) P-frame d = 14.

One example of MCEA is seen in Fig. 1. This 42 × 37 pixel

segment, with its top left corner centered at the (207, 155) pixel of

frame 21 of “foreman” CIF, was encoded with QP set to 22. The

same frame is encoded first as an I-frame, and then as a P-frame

with d = {1, 6, 14}. In Fig. 1(a) the regular blocking grid is well

perceived as it is a portion of an I-frame. For P-frame coding with

d = 1 in Fig. 1(b) we observe that it looks similar to the previous

case with minor spatial displacements in some block edges. For

both Fig. 1(a) and 1(b) the spatial content within the block has low

spatial frequency. As the distance d from the last I-frame increases,

we observe significant changes in Fig. 1(c)-(d). Not only do block

boundaries of the blocking grid dissipate, but new high frequency

artifacts appear within the block boundaries, that are not part of

the original image content.

The video quality metrics evaluation presented in [4] com-

pared several blocking and blurring metrics. Among others, the

blocking metrics were evaluated in their ability to order frames

encoded with the same QP as I-frames, or as P-frames with in-

creasing distance d from the last transmitted I-frame. Apart from

a few full-reference metrics (MSE, PIQE-B [12] and SSIM [13]),

none of the evaluated no-reference metrics resolved the difference

successfully. Subjective testing showed that as d increases, the

test subjects perceived an increase in “blockiness”, which was a

combination of both blockiness and MCEA. Most blocking met-

rics concentrate on the block boundaries, having been primarily

designed with still images in mind, while humans are not as good

at assessing if a particular artifact lies on a block boundary or not.

Traditional methods are not designed to measure these arti-

facts in P-frames. Pixel-based [14, 15] metrics require exact knowl-

edge of artifact location, which is difficult to achieve due to the

combination of fractional-pel motion compensation and variable-

sized blocks. It would also be difficult to modify frequency-based

blocking metrics [16, 17] to measure these artifacts. These meth-

ods rely on the periodicity of the blocking grid (see Fig. 1(a)).

3. MOTION-COMPENSATED EDGE ARTIFACT METRIC

Let M denote the measured DCT energy extracted from an 8 × 8
block in the decoded picture, C denote the energy calculated from

the residual 8 × 8 block DCT coefficients transmitted in the com-

pressed bitstream, and P denote the prediction 8×8 block energy.

Both P and C can be computed exactly given the decoded pix-

els m and the transmitted coefficients c, since the predicted pixels

p = m − c. We seek to design a no-reference metric that esti-

mates the percentage of high frequency energy in M that is not

part of the original image content. This added energy is a result

of P not being an accurate estimate of the HF energy of the un-

known source block, S, in the current frame. The encoder selected

the prediction block because it was the best fit overall, but still its

energy P may not accurately estimate the HF energy in S. The ac-

tual starting amount of extra HF energy is the HF energy in P −S:

the energy of the non-quantized original residuals. Thus, the en-

coder compresses and transmits the residuals with available bits,

resulting in quantized residuals with energy C. The HF energy in

the bitstream, C, clearly, only reduces the HF error. Hence, the

added HF error can be estimated as (P − S) − C. We now need

to estimate the source block energy S.

Here, we estimate S using the weighted average energy E of

the four blocks (aligned with the blocking grid) in the past frame

that are used to form the prediction P . E is also the estimate of

how much HF energy would have been in S, had S been sent us-

ing an I-frame. These four blocks in the past frame overlap the

prediction block with energy P . The assumption here is that E is

a good estimate due to local stationarity; i.e. the energy of regular

grid blocks in a local neighborhood does not change significantly

from one frame to the next. Thus, our estimate of the MCEA en-

ergy added by MC when encoding this frame can be written as

(P − E) − C. We note that the energy estimate (P − E) − C
is not the same as the energy in the estimated signal (p − e) − c.

We estimate its energy E but not the actual signal. We note the

following assumption: the reconstructed residuals c are uncorre-

lated with the original signal s. Recursion is necessary to include

the effects from previous frames. The final estimate of the frame

MCEA energy is then normalized to incorporate texture masking.

Our approach involves the calculation of the MCEA energy

on a block basis. A block-based approach addresses the occurence

of skip blocks, where no DCT coefficients are transmitted at all,

with the efficient use of recursion. For example, if the current

block is a skip block, the MCEA energy is set to the one calculated

for the co-located one in the previous frame. Similarly, for intra

blocks we merely set it to zero as it is by definition. The detailed



implementation follows.

Let the set of all 8 × 8-pixel blocks in a frame be T . The

DCT coefficient in the compressed bitstream (transmitted predic-

tion residuals) at location (i, j) of an 8 × 8 block τ ∈ T in frame

n is cn
τ (i, j). The DCT coefficient obtained from the 8 × 8 DCT

transform of the reconstructed frame is similarly denoted (for the

same spatial position) as mn
τ (i, j). Here, the set of coefficients we

consider, N , is the set of all AC DCT coefficients.

To estimate the source energy for a given block, τ , we let σ(τ )
indicate the set of (up to) four blocks (aligned with the transform

blocking grid) in frame n − 1 that are used to predict block τ
in frame n. The prediction of τ uses w(β) percent of the block

β ∈ σ(τ ). Then, the energy estimate:

E
n
τ =

X

β∈σ(τ)

w(β)
X

(i,j)∈N

`

m
n−1
β (i, j)

´2
(1)

approximates the energy content of the source for the block τ in

the current frame.

Now, we can compute the energy P n
τ in the actual prediction

block exactly, using the measured DCT coefficients in the recon-

struction, mn
τ (i, j), and the received coefficients, cn

τ (i, j). Prior to

adding the residual signal, c, the HF energy added by MC can be

estimated as Bn
τ = P n

τ − En
τ which we rewrite as:

B
n
τ =

X

(i,j)∈N

(mn
τ (i, j) − c

n
τ (i, j))2 − E

n
τ (2)

However, not all of the above energy ends up in the reconstructed

frame. The transmitted DCT energy Cn
τ =

P

(i,j)∈N
(cn

τ (i, j))2

serves only to improve the image quality and decrease the MCEA

energy. The MCEA energy contribution for block τ in frame n can

finally be estimated as:

H
n
τ = B

n
τ − C

n
τ (3)

Note that Eq. 3 can be negative, indicating that the transmitted en-

ergy Cn
τ was enough not only to counter the potential new MCEA

energy Bn
τ but also to offset previously propagated MCEA energy.

Hn
τ has to be added to MCEA propagated from previous frames.

We thus obtain the recursive metric:

µ
n
τ = H

n
τ +

X

β∈σ(τ)

w(β)µn−1
β (4)

The second term on the right hand side is the propagated MCEA

energy from the previous referenced blocks. We now define the

measured energy content of the frame:

M
n =

X

τ∈T

M
n
τ =

X

τ∈T

X

(i,j)∈N

(mn
τ (i, j))2 (5)

In those few cases that the transmitted energy Cn
τ is found to be

greater than the maximally added HF energy Bn
τ and greater than

the increase in local energy (measured energy Mn
τ minus the esti-

mated energy En
τ ), the calculated metric µn

τ for the block is set to

be zero disregarding previously accumulated energy. Intuitively,

if the transmitted DCT energy was enough to offset Bn
τ , and was

again larger than the increase in local energy, we can speculate that

it was enough to counterbalance all previously propagated MCEA

energy (since the increase in energy can be solely attributed to the

image content). The final metric can now be written as:

MCEA =
µn

τ

Mn
(6)

which is an estimate of the percentage of DCT energy in the re-

constructed video frame that is caused by MCEA.

4. RESULTS

We employed MEncoder H.263+ [18] to compress the sequences

“foreman”, “coastguard”, “mother-daughter”, and “mobile- calen-

dar”. We vary the QP from 2 (high quality) to 30 (low quality),

and to minimize the impact of spatial content on the results, we

compute the metric on the same frame 21 encoded using different

distances from the last I-frame d = 1, 6, 14. Results are presented

in Fig. 2(a)-(d). Let us now describe our expectations and discuss

the metric’s performance.

(a) For the same QP and filtering we expect that the energy of

MCEA increases with the distance d from the most recent I-frame.

We observe in Fig. 2 that the metric captures this for all sequences.

(b) For the same QP and d we expect that in-the-loop filtering

decreases the energy of MCEA. Indeed, the metric is lower when

filtering is used.

(c) For the same distance d and in the absence of filtering,

we expect the curves to be monotonically increasing as the QP in-

creases. This expectation is satisfied for the majority of sequences.

The metric is highly irregular only for “mother-daughter”. In fact,

this sequence is so low motion and so easy to encode that it hardly

has any perceivable MCEA, either perceptually or numerically.

Thus, our metric correctly showed that the percentage of MCEA

energy is extremely low.

(d) Subjective testing for the same QP and d showed that “fore-

man” and “coastguard” have the most visible MCEA. “Mobile”

has significantly fewer MCEA, because they are masked by the

abundance of HF image content. The MCEA in “mother” are al-

most invisible. Our metric correctly rank-ordered the sequences to

match this subjective evaluation.

In addition to the expectations discussed above we sought a

further reference for comparison. We designed a simple full-reference

(FR) metric that calculates the energy difference on a block basis

between the reconstructed video and the original sequence. The

FR metric calculates the actual added HF energy due to MC. The

correlation coefficients between our method and the FR metric,

for the four sequences: “foreman”, “coastguard”, “mother- daugh-

ter”, and “mobile- calendar”, were obtained as: 0.9294, 0.9624,

−0.5250, and 0.8638. The negative values for “mother” are ex-

plained in the discussion of expectation (c). It seems that our

method has adequate correlation to FR, and hence estimates the

energy of MCEA.

5. CONCLUSIONS

We discussed and defined a new component of visual impairment,

which, while being ubiquitous in modern block-based video codecs,

had not been investigated before. This impairment is termed motion-

compensated edge artifact and is a direct consequence of motion-

compensated prediction. High frequency energy that is not a part

of the original image content is added and accumulated in con-

secutive P-frames. This energy is perceived as irregular artifacts

within the original blocking grid. We presented a measurement

framework based on calculating and estimating DCT energies in

the current block and its local neighborhood in the previous frame.

Experimental results proved both the accuracy of our metric and

the efficiency of a measurement framework based on energy of

DCT coefficients. Future work can include additional subjective

testing, as well as investigating the design of metrics for the other

impairments using this same framework.
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Fig. 2. Experimental results are shown for the block-based met-

ric. (a) “Foreman”, (b) “Mother-Daughter”, (c) “Coastguard”, (d)

“Mobile-Calendar”.




