
VIPS ― a highly tuned image processing software
architecture

Kirk Martinez
Electronics and Computer Science

The University of Southampton
Southampton, UK

km@ecs.soton.ac.uk

John Cupitt
Scientific Department
The National Gallery

London, UK
John.cupitt@ng-london.org.uk

Abstract—This paper describes the VIPS image processing
library and user-interface. VIPS is used in many museums and
galleries in Europe, America and Australia for image capture,
analysis and output. VIPS is popular because it is free, cross-
platform, fast, and can manage images of unlimited size. It also
has good support for color, an important feature in this sector.
Its architecture will be illustrated through examples of its use in a
range of museum-driven applications. VIPS is free software
distributed under the LGPL license.

Keyrords—Image-processing architecture, large images.

I. INTRODUCTION
When we began work on the high-resolution multispectral

VASARI scanner [1] in 1989 we expected to have problems
handling the 1 GByte images on the systems available to us
back then. Rather than adapting an existing image processing
package, we designed a new one that exploited the then-novel
idea of memory-mapped file IO. VIPS originally processed 1
GByte images on Sun workstations with only 32 MBytes of
RAM; today it is used to process multi-GByte images and is an
Open Source project running on most Unix/Linux flavors, Mac
OS and Windows.

VIPS continued to be developed in later projects, including
MARC[2] and CRISATEL[3], and now supports a number of
interesting features. It is fully demand-driven, that is, all
calculation occurs as a result of a need to produce output. As a
result, VIPS only calculates pels that have to be calculated,
saving computation time. It has an efficient and automatic
system for dividing images into subregions, so images can be
processed in many small sections rather than as single large
objects. This feature reduces the amount of memory required
for calculation. VIPS will automatically split computations
over many CPUs in SMP systems, producing an almost linear
speed-up (though of course this does depend strongly on the
mix of operations). Finally, VIPS is easy to extend, having a
stable and well-documented plugin system. This paper outlines
a few of its typical applications in order to illustrate the
software's properties.

II. SOFTWARE ARCHITECTURE
One of the limiting factors in many image-processing

systems is the fact that whole images are usually loaded into
RAM from a file and that intermediates must be held in RAM
too. This reduces the total amount of image data that can be

processed. Line-based or tile-based systems overcome these
limits by reading one or more lines at a time from a file,
processing them and then streaming the results to an output
file. This style makes random or non-raster image access
difficult. Systems such as GEGL [4] avoid this problem by
using variants of Shantniz's ideas [5] to analyze an operation
graph and predict in advance which pixels will need to be
calculated. This is rather complicated, however, and does not
remove all image size limits.

Unix has a file memory mapping system call (equivalent
functionality is also available in Microsoft Windows) called
mmap, which allocates virtual memory for a file but only reads
disc sectors on demand. On a 32-bit operating system, files up
to about 2 GBytes can be handled easily in this manner with
only small quantities of RAM required. This is the basis of
VIPS file input: you open an image for reading (which uses
mmap) and use a C pointer to read pels. This maintains one of
the aims of VIPS, which is to allow simpler programming for
beginners. It is also possible to create whole intermediate
images in RAM.

A region-based image IO system is also possible, called
partial IO. This allows automatic parallelization on Symmetric
Multiprocessor (SMP) machines, as well as intermediate
minimization. In this mode, image functions are asked to
produce a small section of their output, typically a 64 by 64 tile
or image width by a few lines, and ask in turn for the necessary
sections from their inputs. The VIPS kernel manages the data
driving so the whole image can flow through a pipeline of
functions, each with their own preference for image input.
Additionally, because the VIPS kernel knows which parts of
the input images are being used at any time, it can avoid
mapping the entire image and instead just map a roving
window into the large image. VIPS uses 64-bit arithmetic to
calculate the mmap window position and size, making it
possible to work on images much larger than 2 GBytes on a 32-
bit machine. We routinely process 10 GByte multispectral
images of paintings.

On SMP systems VIPS can automatically duplicate image
pipelines and run them in different threads that the system then
allocates automatically to different CPUs. Six CPUs have
successfully been used in this way providing speed-ups of
around five times. With the advent of multi-core CPUs this
feature will be used even more. The programmer does not have
to do anything special to obtain parallelization, except write or

use partial functions. Figure 1 is a simplified visualization of a
two-function process (eg. preprocess and filter) running on a
dual-processor system. This system has been described in detail
previously [6].

Figure 1. Parallel processing using threads

VIPS has around 250 library functions and has strengths in
color processing (it supports all the commonly used color
models), as well as multi-band and high precision processing. It
lacks a data structure for extracted features (beyond a simple
matrix type) created by functions such as vision or feature
vector algorithms. These have been handled as separate file
types in the content-based retrieval projects described later.

III. EXAMPLE CODE
A beginner might write simple code like this:

int
invert(IMAGE *in, IMAGE *out)
{
 int x, y;
 unsigned char *lbuf, *p;

 if(im_iocheck(in, out) ||
 im_cp_desc(out, in) ||
 im_setupout(out) ||
 !(lbuf = malloc(IM_IMAGE_LSIZE(out))
 return(-1);

 for(y = 0; y < in->Ysize; y++) {
 p = in->data + y * in->Xsize;
 for(x = 0; x < in->Xsize; x++)
 lbuf[x] = 255 - p[x];
 if(im_writeline(y, out, lbuf))
 return(-1);
 }

 return(0);
}

The key lines in the for loops set up the pointer p to the start
of each line and inverts each pel value into the line buffer lbuf.
A partial version has a processing function that looks like this:

int
invert_generate(REGION *or, REGION *ir)
{
 const int left = or->valid.left;
 const int top = or->valid.top;
 int x, y;
 unsigned char *p, *q;

 if(im_prepare(ir, &or->valid))
 return(-1);

 for(y = 0; y < or->valid.height; y++) {
 p = IM_REGION_ADDR(ir, left, y + top);
 q = IM_REGION_ADDR(or, left, y + top);

 for(x = 0; x < or->valid.width; x++)
 q[x] = 255 - p[x];
 }

 return(0);
}

Now invert_generate is required to fill the output region or
with pels calculated from the input region ir. The macro
IM_REGION_ADDR is used to get valid pointers to both input
and output pels. Together with a standard wrapper function this
transforms the code into partial mode. It can be seen here that
the general philosophy is to use pointers to access pels. Thus
code can be prototyped simply before converting to partial
mode for library inclusion. Facilities are available to handle
pels in any C format: char, short, int up to as large as double
complex (used for complex images).

IV. NIP – THE USER INTERFACE
We have built an application on top of the VIPS library that

exploits its features to produce a fully demand-driven image-
processing environment. It allows experimentation with small
regions of images, whole image spreadsheet-style processing
and interaction. Pels are only calculated when absolutely
required, either to update part of the screen or so that another
calculation can proceed. As a result, operations appear to occur
almost immediately, even on extremely large images. The full
calculation is only done when the user selects “save” on the
final image in a workspace.

As well as a lazy image-processing library, nip also has a
lazily evaluated functional language for scripting, resembling
Miranda [7,8] and Haskell [9]. All of the menu items are
implemented in this extension language. The interpreter
implements a number of useful optimizations, including
common-subexpression removal, replacement of arithmetic
operations by lookup tables where possible, and operation
memoisation. It remembers the last few hundred VIPS
operations and if it sees a repeat, it reuses the previous result
rather than starting a new computation.

In use, nip feels rather like a spreadsheet. The workspace is
split into rows and columns and each row contains a value
(image, matrix, number, string and so on) and the formula that
made that value. If you make a change anywhere, nip is able to
recalculate only rows affected by that change. Again, because

calculation is demand-driven, changes are rapid, even for large
workspaces manipulating multi-GByte images.

Figure 2 shows nip being used to repair, color-correct and
assemble an 800 MByte image of “West Bergholt Summer” by
Stephen Taylor. The original painting is 1,910 by 810 mm, the
camera used takes 10,000 by 10,000 pixel images, so to be able
to print a 1:1 reproduction at 300 dpi the painting had to be
shot in two halves and then assembled. Specular highlights on
the surface of the painting caused burnout in the image that had
to be fixed (a simple convolution with a threshold was used to
detect the burnout, then the dead pixels were replaced by the
local median). And finally, the camera color was not very
good, so the Macbeth Color Checker Chart included in one of
the images was used to correct the color. The workspace is
reasonably responsive during use: for example, if you change
one of the convolution kernels, nip updates the screen in about
1.5s. The final save as a 16-bit Adobe98 RGB TIFF takes
about 4 minutes on a dual 2.5 GHz Xeon machine.

On startup, nip uses about 30 MBytes of RAM as reported
by the RES column in “top” output. Most of this is the
extension language interpreter and the support libraries. After

loading the workspace shown in Figure 2, it was using 45
MBytes of RAM. During save as TIFF, RAM use rose to 120
MBytes. The largest intermediate image produced during
computation was 1.7 GBytes.

Figure 2. Example of a complex nip workspace

Nip also has a non-graphical mode where it can be used as
a script interpreter. The National Gallery shop has a posters-on-
demand kiosk where visitors can buy a color-facsimile A4, A3
or A2 print of any painting in the collection. The 8,000 PDF
files are generated by a nip script in about 3 days of processing,
though a lot of this time is spent fetching the high-resolution
originals from a central file server in the IS department.

V. OTHER APPLICATIONS
Initially one of the most-used features of VIPS in museums

was for mosaicing: the process of putting together many small
images from infrared or X-ray imaging. The VIPS algorithm
was specifically devised for mosaicing images with a small
overlap and little geometric distortion. It uses correlation of
interesting points in the overlaps and is fairly robust. It has
been used to stitch and balance large numbers of infra-red
images because the cameras used typically only produce

roughly 700x600 resolution images. In the case of X-ray
mosaics each image is a flatbed scan of a chest film and the
final mosaic can easily become larger than 1GByte. With nip it
is possible to manually locate starter points for the mosaicing,
preview the results then only process on saving the result.

In the Artiste[10] and SCULPTEUR[11] projects content-
based image retrieval was based around VIPS functions. These
produced small feature vector files including histograms,
CCVs, PWTs etc., which were later, compared to give match
scores. The functions were wrapped as MySQL modules and
ran under the control of the database, frequently having to run
on 50,000 images. One key issue was reliability as any crashes
would affect the whole database and this was possibly with
careful debugging.

VI. CONCLUSIONS
The initial design of VIPS centered around handling images

which were much larger than available RAM. At the time it
might have been predicted that RAM would increase in size
eventually and negate this part of the design. However image
sizes now have reached many Gbytes and RAM sizes are only
just moving past the 2 GByte barriers of 32-bit computing. So
VIPS has been able to provide a scalable solution over a
considerable time with the benefit that debugged and tuned
code can be relied on. It is becoming widely used due to its
speed compared with common image manipulation packages,
especially when used on multiprocessor systems. In terms of
aiding research VIPS has allowed perfected image processing
modules to be reused for over ten years because of the
continuity of its API. It is often possible to prototype complex
processes in nip because of the large number of primitive

functions before putting together an integrated function that is
used in production. The software is available from
http://www.vips.soton.ac.uk.

REFERENCES
[1] K. Martinez, J. Cupitt, D. Saunders, R. Pilay, “10 years of Art Imaging

Research”, Proceedings of the IEEE . Vol. 90, No. 1, pp. 28-41, Jan
2002.

[2] J. Cupitt, K. Martinez, and D. Saunders, “A Methodology for Art
Reproduction in Colour: the MARC project”, Computers and the History
of Art, Vol. 6 No. 2, pp. 1 20 1996.

[3] A. Ribes, H. Brettel, F. Schmitt, H. Liang, J. Cupitt, and D. Saunders,
“Color and Multispectral Imaging with the CRISATEL Multispectral
System”, Proc. PICS, IS&T, pp. 215, 2003.

[4] http://www.gegl.org/
[5] M. A. Shantzis, “A model for efficient and flexible image computing”,

SIGGRAPH '94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pp. 147-154, 1994.

[6] J. Cupitt and K. Martinez, “VIPS: an image processing system for large
images”, Proc. SPIE Vol. 2663, pp. 19-28, 1996.

[7] S. Thomson, “Miranda: The Craft of Functional Programming”,
Addison-Wesley, 1995.

[8] S. Thompson, “Laws in Miranda.” ACM Communications, Vol. 2, No. 3,
1986.

[9] J. Hughes, “Why Functional Programming Matters”, The Computer
Journal, Vol. 32, No. 2, 1989, pp. 98 107, 1989.

[10] Lewis, P. H., Martinez, K., Abas, F. S., Ahmad Fauzi, M. F., Addis, M.,
Lahanier, C., Stevenson, J., Chan, S. C. Y., Mike J., B. and Paul, G. “An
Integrated Content and Metadata based Retrieval System for Art”. IEEE
Transactions on Image Processing, Vol. 13, No. 3, pp. 302-313. 2004.

[11] Addis, M., Boniface, M., Goodall, S., Grimwood, P., Kim, S., Lewis, P.,
Martinez, K. and Stevenson, A., “SCULPTEUR: Towards a New
Paradigm for Multimedia Museum Information Handling”, in
Proceedings of Semantic Web ISWC 2870, pp 582 -596, 2003.

	I. Introduction
	II. Software Architecture
	III. Example Code
	IV. NIP – The User Interface
	V. Other Applications
	VI. Conclusions
	References

