
THE EUCLIDEAN K-DISTANCE TRANSFORMATION IN
ARBITRARY DIMENSIONS: A SEPARABLE IMPLEMENTATION

Olivier Cuisenaire

Signal Processing Institute (ITS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

ABSTRACT

The signed k-distance transformation (k-DT) computes the k near-
est prototypes from each location on a discrete regular grid within
a given D dimensional volume. We propose a new k-DT algo-
rithm that divides the problem into D 1-dimensional problems and
compare its accuracy and computational complexity to the existing
raster-scanning and propagation approaches.

1. INTRODUCTION

The signed k-distance transformation (k-DT) computes the k near-
est prototypes from each location on a discrete regular grid within
a given D dimensional volume. It was introduces by Warfield [1]
as a way to speed up k-NN classification when the size of the fea-
ture space was smaller than or comparable to the size of the data
to classify. A typical example of such a problem is the classifi-
cation of tissues in multichannel MR images. The data is a 3-
dimensional MR volume while the feature space is typically a 1-,
2- or 3-dimensional space. The algorithm proposed by Warfield
relies on 2D raster scans over the data, one from each corner of the
volume to its opposite corner. Locally, it performs a fast sorting
of the k nearest prototypes from the up to k.(D + 1) prototypes
nearest to the current location or to the D direct neighbors already
reached by the current scan. It 2D it uses either the approximate
chamfer distance in 2 raster scans or the special raster scanning
first proposed by Danielsson for the Euclidean 1-DT.

A faster implementation relying on ordered propagation was
proposed by Cuisenaire and Macq [2]. The propagation fronts
from the k nearest prototypes reach each location before the prop-
agation from any other prototype, which avoids unnecessary com-
putations and removes the need of an explicit sorting process. On
the other hand, handling of the ordered propagation front adds
to the computational complexity, which nevertheless remains well
below that of Warfield’s approach.

These are the only two k-DT algorithms we are aware of. Both
rely on generalization of the Euclidean 1-DT, which has been the
topic of extensive research. An detailed state of the art up to the
year 1999 can be found in [3]. It includes a number of raster-
scanning algorithms which inspired Warfield’s k-DT and propaga-
tion algorithms that inspired our previous work [2]. But among
1-DT algorithms, a particularly efficient approach divides the D-
dimensional problem into D 1-dimensional problems [4, 5, 6, 7].
This approach - among the most efficient in 2D and by far the most
efficient in 3 and more dimensions - has not yet been extended to
the k-DT.

This is the topic of this paper, which is organized as follows.

In section 2 we recall the principles behind all the separable Eu-
clidean 1-DT algorithms. In section 3 we show how these can be
extended the k-DT and describe the resulting algorithm in details.
Section 4 discusses and computational complexity and compares
it to the previous approaches.

2. THE SEPARABLE 1-DT

The Euclidean 1-DT is the transformation that computes for each
pixel p the distance to the nearest pixel from a set X , i.e.

DX(p) = min
x∈X

(‖p− x‖) (1)

Often, we are actually interested in the identity of this pixel
instead of merely knowing its distance. This is sometimes called
signed DT, Voronoi transform or feature transform. We write it

VX(p) = arg min
x∈X

(‖p− x‖) (2)

In [4, 5, 6, 7], the D-dimensional problem is split into D 1-
dimensional problems. When processing the dth dimension, one
produces an intermediate result

DX,d(p) = min
x∈Xd(p)

(‖p− x‖) (3)

Xd(p) = {x = (x1, ..., xD) : ∀i > d, xi = pi} ∩X (4)

where Xd(p) is the set of object points with the same coordinates
as p for i > d. Initially, DX,0 is 0 for objects pixels and ∞ for
background pixels. Then, the algorithms proceed iteratively by
computing, for all p,

DX,d(p) = min
q∈Ld(p)

(
√

DX,d−1(q)2 + ‖p− q‖2) (5)

Ld(p) = {q : ∀i 6= d, pi = qi} (6)

where Ld(p) is the line of pixels with all coordinates identical to
p’s except for the dth. After iterating over the dimensions from
d = 1 to D, we get DX = DX,D .

How (5) is implemented practically varies between authors.
Obviously all of them get rid of the square root operation by com-
puting D2

X,d instead of DX,d. Also, they use the alignment of p

and q to simplify ‖p− q‖. Equation (5) becomes

DX,d(p)2 = min
q∈Ld(p)

(DX,d−1(q)2 + (pd − qd)2) (7)

Beyond this, the faster algorithms [5, 6, 7] rely on the prop-
erty that the intersection of the Voronoi partition VX and the line



Ld(p) is ordered, i.e. that if we have two pixels q and r ∈ Ld(p)
such that qd < rd, then the nearest pixels x = VX,d(q) and
y = VX,d(r) are such that xd ≤ yd. Unfortunately, this property
does not hold for the k nearest pixels, and therefore those algo-
rithms cannot be extended to implement the k-DT.

On the other hand, Saito [4] implements (7) in two scans over
Ld(p), and relies on a couple of heuristic rules to restrict the
search intervals. While these heuristic only work for the 1-DT,
a similar approach can be attempted for the k-DT, as we show in
the next section.

3. THE SEPARABLE K-DT

3.1. Notations

When considering the k-DT, there is no reason to restrict ourselves
to an object set X where each object pixel only appears once. In-
stead, we use an explicit representation where each of the object
pixels x(i) is identified by its index i with 1 ≤ i ≤ SX

We note N(p, m) the index of the mth nearest object pixel
from p. For all m, n such that 1 ≤ m < n ≤ SX , we have

‖p− x(N(p, m))‖ ≤ ‖p− x(N(p, n))‖ (8)

This relates to the previously defined VX via

VX(p) = x(N(p, 0)) (9)

The aim of the k-DT is to compute N(p, m) for all m ≤ k
and for all p ∈ I where I is a D-dimensional volume of size
S1 × ...× SD .

3.2. Principle

Similarly to the Euclidean DT algorithms, the principle of our ap-
proach is to split this D-dimensional problem into D 1-dimensional
ones. Initially, we consider N0(p, m) for which the indices under
consideration are only those such that x(i) = p.

Then, for N1(p, m), we consider the indices such that x(i) is
in the same line as p, i.e. x(i)j = pj for 1 < j ≤ D. It can be
computed from the N0 by considering the k.S1 indices N0(q, m)
where q is in the same line as p, i.e pj = qj for j 6= 1.

More generally, Nd(p, m) considers only indices such that
x(i)j = pj for d < j ≤ D. It can be computed from the k.Sd

indices Nd−1(q, m) for q d-aligned with p, i.e pj = qj for j 6= d.
By iterating over the dimensions from d = 1 to D, we end up with
N(p, m) = ND(p, m).

This idea is formalized in algorithm 1 where we use the set
Id = {p : p ∈ I, pd = 0} to iterate over all lines in the dth

dimension, of which ed is the unit vector. For memory efficiency,
we consider a single array N instead of one per dimension. In-
deed, N has a size k × S1 × ... × SD which is typically quite
large. Instead, we do consider Nd−1 and Nd separately for the 1-
dimensional sweeps. For computational efficiency, we also store
∆d−1 and ∆d, the square of the distances to corresponding to the
indices in Nd−1 and Nd. These 4 arrays each have a size k × Sd

which is typically negligible compared to N ’s.

3.3. Computing Nd from Nd−1 in 1D

Let us now consider how to compute Nd from Nd−1. First, let us
notice that, for all m ≤ k, is is possible to compute Nd(p, m)
for all n ≤ k by using only Nd−1(q, n) at pixels q d-aligned

for all p ∈ I do {Initialization}
for m = 1 : k do

N(p, m)←∞
end for

end for

for i = 1 : SX do {Compute N0}
m← 1
while (N(x(i), m) 6=∞) ∧ (m ≤ k) do

m← m + 1
end while
if m ≤ k then

N(x(i), m)← i
end if

end for

for d = 1 : D do {Compute Nd from Nd−1}
for all p′ ∈ Id do

for pd = 1 : Sd do
p← p′ + pd.ed

for m = 1 : k do
Nd−1(pd, m)← N(p, m)
∆d−1(pd, m)← ‖p− x(N(p, m))‖2

end for
end for
kdt 1d(Nd−1, ∆d−1, Nd)
for pd = 1 : Sd do

p← p′ + pd.ed

for m = 1 : k do
N(p, m)← Nd(pd, m)

end for
end for

end for
end for

Algorithm 1: Computes the k-distance transformation N(p, m)
for all locations p ∈ I and all values 1 ≤ m ≤ k. N(p, m) is
the index of the mth nearest neighbor from p in the explicit set of
prototypes X = {x(i), 1 ≤ i ≤ SX}

with p, i.e. such that pj = qj , ∀ j 6= d. Indeed, if we consider
i = Nd(p, m), then we must have i = Nd−1(q, n) for some
n ≤ m and for q such that qd = x(i)d and qj = pj , ∀ j 6= d,
since Nd−1(q, .) considers a subset of the indices considered by
Nd(p, .).

Similarly to Saito [4], we use a write-paradigm instead of the
read-paradigm considered so far. In other words, instead of trying
to compute a given Nd(p, m) by considering Nd−1(q, n) for all
values of q and n, we consider a given Nd−1(p, m) and assess
whether it can be propagated to Nd(q, n) for all values q and some
n ≤ k. This is performed in two scans over the line. First we scan
for increasing values of pd and propagate backward for qd between
pd − 1 and 1, i.e.

for pd = 1 : Sd do
for m = 1 : k do

for qd = p− 1 : −1 : 1 do
check if Nd−1(p, m) should be added to Nd(q, .)

end for
end for

end for



Then, we do the reverse, scanning for decreasing values of pd

and propagating towards qd between pd + 1 and Sd.
Checking if Nd−1(p, m) propagates to q is simply done by

comparing the squared distance to the currently stored kth nearest
neighbor for q

‖q− x(N(q, k))‖2 = ∆d(q, k) (10)

with the squared distance to Nd−1(p, m), i.e.

‖q− x(Nd−1(p, m))‖2 = ∆d−1(p, m) + (pd − qd)2 (11)

Both expressions are easy to evaluate once we store the k.Sd

values of both ∆d−1 and ∆d for the current line. If (11) is smaller
than (10), then Nd−1(p, m) needs to be inserted at the proper level
among the k nearest neighbors of q.

Finally, we need to add a proper heuristic in order to restrict
the range of values which qd scans. In his 1-DT algorithm [4],
Saito scans qd in the same direction as pd and gets an upper bound
for qd as pd + (∆d−1(pd + 1, 0)−∆d−1(pd, 0) + 1)/2. Indeed,
for larger values, the distance to N(pd, 0) becomes always larger
than the distance for N(pd + 1, 0).

It would be possible to adapt this method directly to the k-DT
and bound qd by pd+(∆d−1(pd+1, k−m+1)−∆d−1(pd, m)+
1)/2 when propagating Nd−1(pd, m). Unfortunately, this turns
out to be relatively inefficient as only nearest neighbors of pd and
pd + 1 can stop the propagation. Instead, it is more efficient to
back-propagate for decreasing values of qd in the scan where pd

increases and vice-versa. Then, as soon as Nd−1(pd, m) does not
fulfill (11) smaller than (10), we can stop propagating. With such
a scheme, all neighbors for qd ≤ pd can contribute to stop the
propagation. The same heuristic can also be used for the return
scan with decreasing values of pd.

Algorithm 2 summarizes the considerations of this section and
proved a detailed description of the resulting method. The matlab
notation is used for the loops’ limits and steps.

4. COMPUTATIONAL COMPLEXITY

A theoretical assessment of the computational complexity of this
method is not an easy task. In [3], experiments showed that Saito’s
Euclidean 1-DT algorithm [4] - which has significant similarities
with this one - has an image-dependent complexity. For a D-
dimensional image of size S in each dimension, the computational
cost can vary between ◦(SD) and ◦(SD+1). Besides, even in the
later case, there is a ◦(SD) term that dominates for values of S up
to approximately 300.

Instead, we chose to evaluate the computational complexity of
our method experimentally and compare it with the raster scanning
algorithm of Warfield [1] and our previous propagation algorithm
[2]. The algorithms were implemented in C and run on a 3GHz
Pentium 4 computer with 2GB of RAM, 512KB of L2 and 8KB of
L1 cache.

At figure 1, we compute the k-DT in 3 dimensions, finding the
k nearest neighbors among a 1000 samples from two gaussian dis-
tributions located in opposite octants of the volume. The size S of
the cubic volume over which we compute the k-DT is determined
such that the total amount of data generated is approximately con-
stant, i.e. k× S × S × S ≈ 64.106. We vary k between 2 and 40,
and therefore S between 317 and 117.

The separable approach is consistently faster than the previous
methods. While its computational time does increase slightly with

for p = 1 : Sd do
for m = 1 : k do

Nd(p, m)← Nd−1(p, m)
∆d(p, m)← ∆d−1(p, m)

end for
end for
for p = 1 : Sd do

for m = 1 : k do
propagate(p, m, 1)

end for
end for
for p = Sd : −1 : 1 do

for m = 1 : k do
propagate(p, m,−1)

end for
end for

procedure propagate(p, m, α)
if Nd−1(p, m) 6=∞ then

q ← p− α
δ ← ∆d−1(p, m) + α2

l← m
while (δ < ∆d(q, k)) ∧ (1 ≤ q ≤ Sd) do

while δ ≥ ∆d(q, l) do
l← l + 1

end while
for n = k : −1 : (l + 1) do

∆d(q, n)← ∆d(q, n− 1)
Nd(q, n)← Nd(q, n− 1)

end for
∆d(q, l)← δ
Nd(q, l)← Nd−1(p, m)
q ← q − α
δ ← ∆d−1(p, m) + (p− q)2

end while
end if

end procedure

Algorithm 2: Procedure kdt 1d(Nd−1, ∆d−1, Nd), computes Nd

from Nd−1

k, it is between 2 and 4 times faster than the propagation method,
and between 4.5 and 9 times faster than the raster scanning ap-
proach.

Additional experiments in 3D with different numbers or posi-
tions of the samples - as well as with different total amount of data
generated - lead to similar conclusions.

5. DISCUSSION

While the previous section is focused on computational complex-
ity, the separable k-DT offers a number of additional benefits com-
pared to the propagation or raster scanning methods.

Firstly, it computes the exact k-DT and is the first k-DT algo-
rithm to do so. Indeed, both propagation and raster scanning can
make a few isolated errors similar the errors of similar Euclidean
1-DT algorithms such as Danielsson’s [8].

Secondly, it is extremely easy to parallelize as each line can
be processed independently, which provides a linear speed-up with
the number of processors used.



0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

k

C
P

U
 ti

m
es

 (s
ec

)

separable
propagation
raster scan

Fig. 1. Computational times for the k-DT algorithms computed
with 1000 prototypes. k varies between 2 and 40 and the size S of
the cubic volume in which the k-DT is computed is chosen so that
k × S × S × S ≈ 64.106

Thirdly, compared to the propagation method, it requires a
very low memory overhead compared to the amount of data it gen-
erates.

Finally, let us note that the experiments of the previous section
were performed in 3 dimensions. In 2D, the results are less impres-
sive. While the algorithm still perform efficiently, it is not always
significantly outperforming the other methods. On the other hand,
in D > 3 dimensions, the new method is both easier to implement
and very significantly faster than the alternatives

6. CONCLUSION

We have developed a new algorithm to compute the Euclidean k-
distance transformation, which generalizes the classical Euclidean
DT by computing not only the nearest object point but the k nearest
points, and can be applied to implement k-NN classification of
multi-channel data.

The proposed method is both more accurate and significantly
faster than previously published algorithms, especially in D > 3
dimensions.

7. REFERENCES

[1] S. Warfield, “Fast k-nn classification for multichannel data,”
Pattern Recognition Letters, vol. 17, pp. 713, 1996.

[2] O. Cuisenaire and B. Macq, “Fast k-nn classification with an
optimal k-distance transformation algorithm,” in Proc. 10th
European Signal Processing Conference, September 2000, pp.
pp. 1365–1368.

[3] O. Cuisenaire, Distance transformations: fast algorithms and
applications to medical image processing, Ph.D. thesis, Uni-
versité catholique de Louvain (UCL), Louvain-la-Neuve, Bel-
gium, October 1999.

[4] T. Saito and J.I. Toriwaki, “New algorithms for euclidean
distance transformations of an n-dimensional digitised picture

with applications,” Pattern Recognition, vol. 27, no. 11, pp.
1551–1565, 1994.

[5] T. Hirata, “A unified linear-time algorithm for computing dis-
tance maps,” Information Processing Letters, vol. 58, no. 3,
pp. 129–133, 1996.

[6] A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink, “A
general algorithm for computing distance transforms in lin-
ear time,” in Mathematical Morphology and its applications
to image and signal processing, J. Goutsias, L. Vincent, and
D.S. Bloomberg, Eds., 2000, pp. 331–340.

[7] C.R. Maurer Jr, R. Qi, and V. Raghavan, “A linear time al-
gorithm for computing exact euclidean distance transforms of
binary images in arbitrary dimensions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp.
265–270, 2003.

[8] P.E. Danielsson, “Euclidean distance mapping,” Computer
Graphics and Image Processing, vol. 14, pp. 227–248, 1980.


