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ABSTRACT

In this paper we propose a novel image restoration method
that effectively combines a particle filter with wavelet shrinkage
to achieve robust performance against inhomogeneous noise mix-
tures. Specifically, the particle filter acts to suppress outlier-rich
components of the noise while, in a subsequent step, the wavelet
domain shrinkage attenuates any remaining, less heavily tailed
noise components. We present late breaking preliminary examples
demonstrating excellent rejection of salt-and-pepper like Cauchy
noise mixed with additive white Gaussian noise (AWGN). Al-
though limited in scope, these preliminary results suggest that
the combination of particle filters with more traditional restoration
techniques is a powerful approach that can provide a new dimen-
sion of flexibility for addressing noise mixtures involving difficult
nonlinear and non-Gaussian components.

1. INTRODUCTION

The objective of restoration is to recover an image that has been
corrupted by distortion and noise. In general, the distortion could
be linear or nonlinear and the noise might be Gaussian, heav-
ily tailed, or both [1]. Traditional approaches typically involve
a tradeoff between a deconvolution process designed to combat
the distortion and a denoising process. In this paper, we focus on
the denoising part of the problem and specifically consider noise
mixtures involving simultaneous heavily tailed and Gaussian com-
ponents. Although the median filter is ideal for rejecting impul-
sive noise, its performance has been shown to be suboptimal when
Gaussian noise components are also present [2].

Shrinkage methods based on thresholding in the discrete
wavelet domain have attracted significant attention in image de-
noising applications [3]- [5]. The basic idea is to decompose the
noisy image using the discrete wavelet transform (DWT) and then
apply thresholding, where it is assumed that small coefficients in
the high frequency (small spatial scale) subbands are associated
with noise and can be set to zero without substantially affecting
the main visually important features of the image.

In this paper we consider the combination of particle filter-
ing (PF) with wavelet shrinkage as a new hybrid approach for
dealing with difficult, inhomogeneous noise mixtures containing
both Gaussian and heavily tailed components. The PF technique
has emerged as a superior method for treating nonlinear and non-
Gaussian problems [6]- [8] and has been applied recently for im-
age and video processing [9]- [11]. Also known as sequential im-
portance sampling (SIS), PF is a Monte Carlo (MC) method that
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propagates a set of weighted samples (or particles) to simulate the
posterior distribution of a system’s trajectory in state space. Since
PF inherently supports nonlinear dynamics and non-Gaussian forc-
ing and measurement noises, we use it here to suppress the heavily
tailed components of the corrupting noise, whereas wavelet shrink-
age is applied in a subsequent step to attenuate the Gaussian noise
components.

2. PROPOSED METHOD: PF-DWT DENOISING

When an image is corrupted by noise comprising both heavily
tailed and Gaussian components, we have observed that undesir-
able blurring artifacts are often introduced if one attempts to sup-
press both components simultaneously. Therefore, we introduce a
two-stage hybrid denoising technique called PF-DWT. In the first
stage, a spatial PF is used to suppress the heavy tailed component
of the noise. In the second stage, wavelet thresholding is applied
to attenuate the remaining “Gaussian-like” noise. The input of the
second stage depends on the output of the first stage, thus realizing
a synergistic hybrid approach that is robust and effective against a
wide variety of inhomogeneous noise mixtures.

2.1. General Form of The Particle Filter

In this section, we briefly review the general PF framework de-
scribed in [6] - [8]. Consider a nonlinear system modeled in state
space according to

Xt = f(X¢—1) + Vi1, 1)
Y, = h(X)+ng (2

where X, and y, denote the hidden states and the observations of
the system at time t, respectively. Both f(-) and ~(-) could be non-
linear functions. For image processing, the time index ¢ is replaced
by spatial indices ¢ and j representing the row and column of a
pixel, respectively. The process and observation noises, which are
assumed non-Gaussian, are given by v; and n., respectively. The
goal of the PF is to simulate the posterior distribution p(Xo:¢|y;.,),
which, according to Bayes’ theorem, is given by

D(Y1.¢Xo0:t) P(Xo:¢)
I p(¥1..|X0:t) p(Xo:¢) dXo:e ©)

Applying SIS, the state vector posterior distribution is approxi-
mated by

p(Xo Y1) =
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where the normalized importance weight @, is given by
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Equation (6) is the importance weight update equation. The par-
ticles (or samples) xﬁ” are drawn from the proposal distribution
q(%e X5 1, Yo.,)- In addition, p(y,[x(") and p(x{”|x(",) repre-
sent the system’s likelihood and the state transition prior, respec-
tively. The variable N denotes the number of particles. The pro-
posal distribution is an arbitrary distribution which needs to have
at least some support from the posterior distribution of the true
state. In addition, it has been shown that the variance of the im-
portance weights increases over time [6]. This implies that after a
few iterations, all but one weight will converge to zero. When this
occurs, a resampling scheme is introduced to solve this degeneracy
problem. More specifically, in a resampling scheme, a new set of
equally weighted particles are generated from the previous parti-
cles with large weights, while the particles with small weight are
replaced. In other words, resampling discards the particles with
small weights and focuses on the particles with more significant
weights.

(6)

2.2. Particle Filter For Image Processing (Spatial Case)

To implement the PF, we employ a 2-D state space model similar
to the ones used for Kalman filtering in [2, 12, 13].

2.2.1. The Image Model

We use the image model proposed in [13] since it is efficient in the
sense of using only a small number of pixels:

(i, j) =hal(d, 5 — 1) + h2l(i — 1, 5)

where I(4, j) denotes the pixel at the i*" row and 5" column of the
image. In (7), h1, h2, and hs are image parameters which can be
estimated by various methods including, e.g., least-squares. Next,
the following state space model is constructed:

x(i,7) =Cx(i,j — 1) + Eu(i, j) + Dw(i, j), ®)
y(i,5) =Hx(i, ) +v(i, j), ©)
where
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The input term w(3, j) is introduced as the recent estimate of pixel
I(i — 1,7 4+ 1). The variables w and v denote the process noise
and the measurement noise, respectively.

2.2.2. The Spatial Particle Filter Algorithm

The first step in designing a particle filter is to choose a proposal
distribution. While arbitrary in form, the proposal must be sup-
ported by the posterior distribution of the true system state and
must be easy to sample. For PF-DWT we use a standard Kalman
filter to provide the proposal distribution, since the image model is
a linear system with non-Gaussian noise. Although the estimates
delivered by the Kalman filter are not optimal in this case, they
still provide the required support for the true posterior. The 2-D
Kalman filter formulation is given by

x(i,5) =C%(i,j — 1) + Eu(i, j) (10)
P(i,j) =CP(i,j — 1)C" + DQD" (11)
K(i,j) =P(i, j))H" [HP(i, j)H" + R~ (12)
x(i,7) =%(i,J) + K (i, )y (i, j) — Hx(i,5)]  (13)
P(i,j) =[I — K(i,j)H]P(i,j) , (14)

where R and @ denote the covariance of the process noise and
measurement noise, respectively. Finally, the spatial particle filter
algorithm is illustrated in Fig. 1 and is also summarized below.

1. Sequential Importance Sampling (SIS) Step:

e Ateach iteration, calculate x(i, ) and P(3, j) according
to (10)-(14).

e Sample from the proposal distribution:
2 (i, §) ~ N (%(i, 5), P, ) -

o Evaluate the importance weights according to (6): calcu-
late the transition prior, the likelihood and the proposal.
e Normalize the importance weights using (5).
2. Resample and Update Step:

e Generate a new set of particles z** (¢) from = (i, 5),
so that
Pr(2"(i.j) =2(i,5)) = 5V (0,5) -

e The final estimate of x(¢, 7) is given by

“(i,4)

e Update the proposal with the resampled particles.

2.3. Wavelet Thresholding for PF-DWT

We begin by applying the DWT to decompose the data into sub-
bands. A threshold is then applied for noise removal. In the DWT
domain, small coefficients in the high frequency subband are as-
sumed to arise primarily from noise. The idea is to “zero out” the
high frequency subband coefficients that are less than a particular
threshold. These coefficients are used in an inverse wavelet trans-
formation to reconstruct the data set. In this paper, we employ the
universal threshold [3] [4] given as:

T = o/Tlog, Na (15)
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Fig. 1. Block Diagram of the Spatial Particle Filter

where Ny is the size of the data set. By definition, basic threshold-
ing methods are hard thresholding:

pr(r) = { 0 EJJ:||§|| 21 (16)

and the soft thresholding:
z—T ife>T

c+T ifx <-T a7
0 if |l <T .

pr(z) =

Moreover, the universal thresholding method can be improved
by using the translation invariant technique given in [3]. The basic
idea of this method is to estimate the coefficients of all translations
and take the average after a reverse translation. The final estimate
is given by this average. More specifically, the coefficients F?
of all the translated data, denoted by X”[n] = X[n — p], are
calculated. By definition,

N-—1
F? =" pr(XP[m])gm (18)
m=0

where pr is a hard or soft thresholding function. Then, these co-
efficients are shifted back and the averages are evaluated, which
gives the final estimate as

Plnl = S Eontp) (19)

As indicated in [3], the translation invariant method produces a
better denoised image than universal thresholding.

3. EXPERIMENTAL RESULTS

In this section, the standard 256 x 256 grayscale image “Lena”
is used to assess the performance of the proposed hybrid denois-
ing algorithm. The noisy image is generated by adding Gaus-
sian noise with a variance of 200 and a Cauchy noise with pdf
f(z) = 6/n(x* +6%), where § = 5. The original and noise
corrupted images are shown in Fig. 2(a) and (b), respectively. To
construct the image model (7), the parameters A1 = 0.815493,
ha = 0.489516, hg = —0.308866 were employed. These values
were estimated by using the least squares method [13].

The two-stage PF-DWT hybrid denoising process is carefully
tailored to operate synergistically. In the first stage, a PF which

(c) Restored Image Using PF
(ISNR=3.1991 dB)

(e) PF with Translation
Invariant Hard Thresholding
(ISNR=6.7126 dB)

Fig. 2. This figure shows: (a) the original image, (b) the noisy
image, (c) the result obtained by only applying the particle filter,
(d) the restored images obtained by the PF with the translation
invariant thresholding.

uses Kalman filter state estimates as its proposal is utilized to sup-
press the heavy tailed noise. After the this stage, the remaining
noise is “Gaussian-like” in character and is attenuated by wavelet
thresholding. In the second stage, translation invariant soft/hard
thresholding is applied to the PF result to achieve further noise re-
moval. Two examples of images restored in this way are shown
in Fig. 2 and 3. As indicated in Fig. 2(c), the PF removes most
of the heavy-tailed noise. The remaining noise, which is observed
to have a “Gaussian-like” distribution, can be removed using the
wavelet thresholding method. The denoised image obtained via PF
and translation invariant hard thresholding is shown in Fig. 2(d).
As a second example, the grayscale image “cameraman” is also
used to test the performance of the proposed method. The original,
noisy, and denoised images are show in Fig. 3(a)-(d), respectively.
These results show that the restored images Fig. 2(d) and Fig. 3(c),
(d) are of remarkable visual quality. In addition, as a quantitative
performance measure, the improved signal to noise ratio (ISNR) of
the proposed hybrid method are also shown in Fig. 2 and Fig. 3.

4. CONCLUSIONS AND FUTURE WORK

Images transmitted over modern packet switched wireless chan-
nels often contain both Gaussian and heavy-tailed noise. In this pa-
per, a PF-DWT hybrid denoising method was proposed for restor-
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(b) The Noisy Image

(c) PF with Translation
Invariant Hard Thresholding
ISNR=5.4722 dB

(d) PF with Translation
Invariant Soft Thresholding
ISNR= 3.4959 dB

Fig. 3. As another example, this figure shows: (a) the original im-
age, (b) the noisy image, (c) and (d) the restored images obtained
by PF with translation invariant hard/soft thresholding.

ing an image contaminated by an inhomogeneous mixture of both
types of noise. The simulation results presented here demonstrate
that the proposed method can effectively recover the original im-
ages and merits future study. Various techniques including the
BayesShrink algorithm [14] have been proposed recently for cal-
culating improved thresholds. Based on the observation that the
wavelet coefficients in a subband can be approximated by a gen-
eralized Gaussian distribution (GGD), the improved threshold is
given by 7' = 42 /6 x, where 62 and 6 x are the estimated noise
variance and standard deviation of the GGD wavelet coefficients,
respectively. Important future work will include incorporating this
technique into the PF-DWT approach in the near future.
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