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ABSTRACT

In this work we explore the potentialities of a framework
for the representation of audio-visual signals using decom-
positions on overcomplete dictionaries. Redundant decom-
positions may describe audio-visual sequences in a concise
fashion, preserving good representation properties thanks to
the use of redundant, well designed, dictionaries. We expect
that this will help us overcome two typical problems of mul-
timodal fusion algorithms. On one hand, classical represen-
tation techniques, like pixel-based measures (for the video)
or Fourier-like transforms (for the audio), take into account
only marginally the physics of the problem. On the other
hand, the input signals have large dimensionality. The re-
sults we obtain by making use of sparse decompositions of
audio-visual signals over redundant codebooks are encour-
aging and show the potentialities of the proposed approach
to multimodal signal representation.

1. INTRODUCTION

The problem we are studying in this work is that of correlat-
ing audio tracks with visual data to detect those regions in
an image sequence from which the sound is originated. The
topic was first faced by Hershey and Movellan [1]. They
measured the correlation between audio and video using an
estimate of the mutual information derived from the Pearson
correlation coefficient between the energy of an audio track
and the value of single pixels. Slaney and Covell [2] gener-
alize this approach and look for a method able to measure
the synchrony between audio signals and video facial im-
ages. In order to deduce a relationship between the cepstral
representation of the audio and the video pixels, the authors
use canonical correlation analysis. In [3], an approach based
on Markov chains modeling audio and video signals is pro-
posed. The audio-visual consistency is assessed by max-
imizing the mutual information between the power spec-
trum coefficients of the audio and the video pixels intensity
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change. For the three methods, audio and video joint den-
sities are deduced by training on audio-video sequences. A
method that does not make use of any previous model train-
ing is that proposed by Fisher and Darrell [4]. The algo-
rithm is based on a probabilistic generation model that is
used to learn audio and video linear features that maximize
the mutual information between the different modalities. A
slightly different approach is used in [5], where a method-
ology for extracting audio-visual independent components
from video streams is presented. However, this technique is
not able to deal with dynamic scenes.

In this paper, we explore a completely new framework
for the representation of multimodal signal in the context
of audio-visual fusion. This is based on the sparse decom-
position of signals over atoms dictionaries using Matching
Pursuits [6] (MP). An appropriate decomposition of a signal
over a well designed redundant dictionary provides an inter-
pretation of the information in terms of the most salient sig-
nal structures. By representing the video using image struc-
tures (atoms) that evolve in time, in fact, we deal with dy-
namic features that have a true geometrical meaning, that is
not the case when using pixel-based representations. At the
same time, the MP decomposition provides a sparse repre-
sentation of the information, allowing a considerable reduc-
tion of the dimensionality of the input signals. This should
allow us to handle information in an easier and faster way,
and thus to develop relatively simple and intuitive, but ef-
fective, fusion criteria. In order to combine audio and video
representations, we use a “classical” measure of correla-
tion, the Pearson correlation coefficient. The obtained re-
sults show that our technique allows to locate those image
structures from which the audio signals are originate.

2. AUDIO AND VIDEO REPRESENTATIONS

Audio and video signals are represented using MP decom-
positions over redundant dictionaries. In the next sections,
we will present the MP algorithm for 1-D signals, and the
techniques that have been developed to extend it to the com-
plex case of video sequences.



2.1. Audio Decomposition

The audio signal a(t) is decomposed using the MP algo-
rithm over a redundant dictionary D4 of unit norm func-
tions called atoms. The family of atoms that form D 4 is
generated by scaling by s, translating in time by u and mod-
ulating in frequency by ¢ a generating function g(t) € L%(R).
Indicating with an index ~y the set of transformations (s, u, £),
an atom can be expressed as

g:(0) = g (") e, (1)

In our case, we consider a dictionary of Gabor atoms. That
is, the generating function g(t) is a normalized Gaussian

window, which has been chosen for its optimal time-frequency

localization [7].
The first step of the MP algorithm decomposes a as

a = <a7g’YU>g’Yo + Rlaa (2)

where Rla is the residual component after approximating
a in the subspace described by g,,. The function g., is
chosen such that the projection |{a, g-, )| is maximal. This
procedure is recursively applied, and after [V iterations the
signal a is represented as

N-1
a = Z <Rna? g’)’n>g'7n + RNa ’ (3)

n=0
where R® = ¢ and R"a is the residual after n iterations.

2.2. Video Decomposition

The image sequence is represented using the MP algorithm
proposed by Divorra and Vandergheynst [8]. This technique
decomposes a sequence into a set of 2-D atoms evolving in
time, allowing to represent salient geometric video compo-
nents tracking their temporal transformations.

An iteration on the video MP algorithm decomposes the
first frame of the sequence over a redundant dictionary Dy,
of 2-D anisotropic atoms [9]:

I = Z C%‘g%‘ 9 (4)
vi €Q

where 4 is the summation index, ¢, corresponds to the pro-
jection coefficient for every atom g, and €2 is the subset of
selected atom indexes from dictionary Dy,. The changes
suffered from a frame I; to I;4; are modelled as the ap-
plication of an operator F; to the image I; such that [, =
Fy(Iy)and I = >° o FY (¢, g%, ), where F, represents
the set of transformations F;' of all atoms that approximate
each frame. A MP-like approach similar to that used for the
first frame is applied to retrieve the new set of g/ (and the
associated transformation F}). At every greedy decomposi-
tion iteration only a subset of functions of the general dic-
tionary is considered to represent each deformed atom. This

subset is defined according to the past geometrical features
of every atom in the previous frame, such that only a limited
set of transformations are possible. The formulation of the
MP approach to geometric video representation is complex
and is treated in detail in [8], to which the interested reader
is referred.

3. AUDIO-VISUAL FUSION

The described decompositions of audio and video sequences
represent salient parameterizations of these signals. Thus, a
natural and straightforward way to relate audio and video
sequences is to compare these parametric representations.
The considered audio-visual features are presented in Sec-
tions 3.1 and 3.2, while the criteria that are used to relate
them are introduced in Section 3.3.

3.1. Audio Features

The audio representation that we obtain from the MP de-
composition it is not directly exploitable. It has to be further
processed in order to be easily compared with the evolution
of the video parameters. Basically, we require one feature,
composed of the same number of samples L as the image
sequence.

In this work, we have decided to use a simple approach
exploiting the properties of sparse signal representations over
redundant dictionaries. The MP decomposition of the audio
track, in fact, performs a denoising of the signal, pointing
out the most relevant signal structures. Our audio feature
is obtained by simply averaging the energy present at each
time instant, where the time-frequency energy distribution
of the audio signal is found by decomposing it with the MP
algorithm presented in Section 2.1. Our feature is similar
to those described in [3, 4], with the difference that we at-
tribute to each frequency component the same weight. This
approach is of course a very simple one, but the fine time-
frequency resolution of the dictionary decomposition allows
us to obtain a description that captures nicely the evolution
of the audio track. We show in Fig. 1 (left) the audio feature
obtained for one of the tested sequences.

3.2. Video Features

When dealing with the video signal, basically all the re-
viewed approaches use pixel intensities as video features,
with the exception of [3], where the pixel intensity change
in a 3 X 3 averaging spatial window is considered. Pixel-
related quantities seem to us a poor source of information,
that, in addition, has a huge dimensionality. Moreover, it
is sensitive to noise and does not consider image structures,
since spatial correlation is not exploited. We have decided,
thus, to explore the possibilities offered by the greedy video
decomposition technique presented in Section 2.2. In this
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Fig. 1. Audio feature representing the acoustic signal of one tested sequences (left), and temporal evolution of the parameters of one atom
used to decompose the image sequence (right). From left to right and from top to bottom: Coefficient, horizontal position, vertical position,
short axis scale, long axis scale and rotation. Only the first row parameters (coefficient and positions) are considered as video features.

way, we hope to be able to track important geometric fea-
tures over time and to parameterize those transformations
that represent changes in the scene. The output of the MP
algorithm is a set of atoms parameters that describe the tem-
poral evolution of 3-D video features. Each atom is charac-
terized by a coefficient, 2 position parameters, 2 scale pa-
rameters and a rotation, i.e. 6 parameters. Fig. 1 (right)
shows an example of atom parameters evolution as a func-
tion of time.

The video features we consider, however, are not all
these 6 variables. The scale parameters have been discarded,
since they carry few information about the mouth move-
ments. From our experiments, the atom orientation brought
an unprecise description of the real geometric feature. We
have thus chosen to discard it. Therefore, we have decided
to employ only the atoms coefficient and positions as video
features, obtaining 3 descriptors per atom. Each video se-
quence is represented with N time-evolving atoms. Hence,
we end up with 3 x N functions composed of L samples.

3.3. Fusion Criteria

Starting from the atomic representations obtained using the
procedures described in Section 2, we want to detect those
video atoms that are more correlated with the audio feature.

Information theoretic formulations such [3, 4] use the
Mutual Information measure as fusion criterium [10]. How-
ever, when few data samples are available, there may be
problems concerning probability density estimations. Thus,
we have decided to employ a simple but robust measure of
correlation, the Pearson correlation coefficient [11]. The
Pearson coefficient is a parametric measure of correlation
and reflects the degree of linear relationship between two
variables. The observations for both variables should be ap-
proximately (bivariate) normally distributed. The Pearson
correlation coefficient is easy and fast to compute, and al-
lows the definition of a statistical test to estimate the signif-
icance of the considered coefficient. Given two observation

vectors x and y of length n, the value of the Pearson coeffi-
cient p between x and y is computed as

>y (xi — E{x})(yi — E{y})
Vg (@i — E{x})2/ 30 (i — E{y})?

where E{x} and F{y} denote the mean values of x and y.

For each video feature, the value of the correlation p
with the audio feature is computed. A probability p associ-
ated to the correlation coefficient is also computed, in order
to assess the significance of the value of p. When the true
correlation is zero, the quantity

b= , ()

fi(p) -2 (6)
belongs to a Student’s distribution with n — 2 degrees of
freedom, f;(n — 2), being n the number of samples [11]. If
the probability p that f,(5) belongs to f;(n — 2) is small,
then the correlation is significant. Since each atom is de-
scribed by 3 time-evolving features, for each video atom we
have 3 correlation values. We select those atoms for which
all 3 coefficients p have small probability p.

4. EXPERIMENTS

The framework we have developed is used to detect the
video region from which the corresponding audio signal is
originated. Experiments have been carried out on video
streams representing one person speaking in front of the
camera. The visual data was recorded at 25 frames per sec-
ond at a resolution of 144 x 176 pixels. The soundtrack was
collected at 48 kHz and sub-sampled in order to obtain a
signal at 8 kHz.

The video frames are high-pass filtered and decomposed
using the algorithm described in Section 2.2, obtaining a set
of 2-D time-evolving atoms. The audio part is decomposed
using MP over a dictionary of Gabor atoms, using the Last-
Wave implementation of MP for 1-D signals [12]. Based



(a)

Fig. 2. Sequences Elena and Elisa. Original video frames (a),
white footprints of the video atoms correlated with the correct
soundtrack (b) and atoms correlated with an incorrect audio sig-
nal (c).

on such decomposition, the audio feature is extracted as de-
scribed in Section 3.1. The number of basis functions used
for the decomposition of audio and video signals is heuris-
tically chosen, in order to get convenient representations.
However, a distortion criteria can be easily set, in order to
automatically determine the required number of atoms.

In Fig. 2, we show the results of the described proce-
dure applied to the test sequences Elena and Elisa. Both
sequences show one person speaking in front of the camera
and they last about 8 seconds, i.e. they are approximately
200 frames long. In Fig. 2 (a), two frames from the origi-
nal video sequences are depicted. In Fig. 2 (b), the image
structures that are more correlated with the corresponding
soundtrack are highlighted in white. Fig. 2 (c¢) illustrates
the video components that are more correlated with the au-
dio signal of a different video sequence.

The experiments show that the proposed methodology
allows to clearly distinguish between correct and incorrect
audio and to locate the speaker’s mouth. Moreover, in all the
simulations that we have run, the estimated correlation co-
efficients are always higher (about 10 — 20%) for matching
audio-visual signals than for discordant audio-visual pairs.
The original sequences, together with the complete set of
results, are available on the author’s web page [13].

5. DISCUSSION AND FUTURE WORK

In the present work, we propose a dictionary approach to
audio and video representation in the context of joint audio-
visual analysis. The motivation for exploring this way is
mainly the observation that image sequences are typically
interpreted as huge pixel intensity matrices evolving in time.

The fact of considering pixel-related quantities seems to us
a remarkable limiting factor, since the pixel itself is a poor
source of information. Video atoms, on the other hand, rep-
resent time-evolving image structures, and their parameters
intuitively describe how such structures move and change
their characteristics in space and time. Furthermore, such a
representation is extremely concise and easy to handle.

The results shown in this paper are obtained by making
use of algorithms that have been conceived for different pur-
poses and the features and fusion criteria we consider are,
to put it mildly, rough. However, the experimental results
we have obtained encourage us in pursuing in this direction.
In the future, we plan to investigate more appropriate audio
features and to study in details the relationship between au-
dio and video, in order to define an accurate fusion strategy.
Moreover, the stability of the video representation has to be
considered, in order to improve image features tracking in
complex scenes.
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