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ABSTRACT

Recently, a lot of research has been conducted into the
usefulness of gait for identification at a distance. Since the
gait of a person is readily identified when extracted from a
canonical side view, most algorithms work with the premise
that the motion is frontoparallel in nature, or require some
knowledge of the camera calibration. Realistically people
will always walk along different trajectories to the cam-
era. In this paper we show that gait has sufficient properties
that allows us to exploit the structure of articulated motion
within single view sequences, in order to remove the un-
known subject pose and reconstruct the underlying gait sig-
nature, with no prior knowledge of the camera calibration.

1. INTRODUCTION

The effect of varying subject trajectory pose is quite pro-
nounced on the set of measured gait angles.
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Fig. 1. Three views of a subject walking along a linear tra-
jectory with constant velocity.

Left —o—
Middle
o Right —a—

Gait Angle (Degrees)

10 20 30 40 50 80 70
Frame Index

Fig. 2. Gait angles of upper leg extracted for all three views.
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For recognition purposes we must then either use a bio-
metric that is invariant to subject pose or be able to recon-
struct the canonical frontoparallel view of gait motion. Re-
searchers have recently given much attention to gait recog-
nition for the canonical view and have successfully shown
that identification is possible for different gait speeds [1].
Others have tried to synthesize frontoparallel views by use
of structure from motion [2, 3], but require some informa-
tion about camera calibration. Affine multi-view 3D recon-
struction of gait is possible by consideration of rigid bone
lengths [4]. In this paper we propose a method to recon-
struct gait motion from monocular image sequences by tak-
ing advantage of the constraints of articulated limb motions.
We assume no prior knowledge of the camera calibration,
only that people walk in straight lines with constant veloc-
ity and limbs that swing in planes. We assume that the com-
puter vision task of finding limb landmark points and track-
ing them over all frames in the sequence is solved.

2. A STRATIFIED APPROACH TO LINEAR
TRAJECTORY GAIT RECONSTRUCTION

Multiple periods of linear gait motion is analogous to a sin-
gle period viewed from many cameras related by linear trans-
lation. The matching landmark correspondences lie in an
auto-epipolar configuration with the imaged motion direc-
tion e, see fig. 3. To find correspondence matches we com-
pute the vector of fitting cost errors for each putative value
of period. The epipole is found by computing the intersec-
tion of the set of lines formed through each of the puta-
tive matched cluster sets. The periodicity error is calcu-
lated by applying the stereopsis transformation that maps
the epipole e to the ideal point (1,0,0) " and computing the
cost based on dot product between matching limb segment
vectors. Most poorly fitted values occur in the head and tail
segments of the cost vector so the smoothed errors are fitted
to a first order harmonic series with Gaussian envelope.

2.1. Recovering Affine Structure

We first determine the normalization transform K, with
isotropic scaling that maps the set of landmark point tracks
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Fig. 3. Imaged matching similar phase poses. Landmark
points a — d shown with matched poses. Each landmark
point has T}, phase positions a,a’, - - - , a*, with each set of
matching phase clusters (ag, - - ,a,), (ah, -+ ,a}), - in

auto-epipolar configuration with the motion epipole e.

to the unit square x’ = K,x, then transform the epipole
e’ = K,e and re-normalize to unit norm ||e’|] = 1. We
then compute the interpolated set of re-sampled landmark
point tracks that approximate the similar phase matches by
assuming linear velocity between frames. For each set of
matching phase clusters, see fig. 3, find the optimal point
estimates X; that lie on the epipolar line satisfying the condi-
tion %, [e/]« % ; = 0. The back projected rays formed from a
set of optimal point estimates intersect in a single worldspace
point. The back projection of all sets of point estimates gen-
erates the cluster of 3D point tracks for an assumed single
period of reconstructed gait motion. We use the Direct Lin-
ear Transform, ([Xx]«P) - X = 0, with the set of camera
projection matrices Py, = [R] | —k.€’] to compute the 3D
points X, where R is the 3 by 3 rotation matrix that aligns
the epipolar vector €’ with the X axis, and k an integer de-
scribing the camera periodicity translation.

We can now apply the assumption that articulated limb
motion is planar, and proceed to fit the 3D limb points to
two planes. Since we have aligned the epipolar vector with
the X axis, one such point that must lie on each of the
worldspace planes is the ideal point (1,0,0,0)". The pen-
cil of planes that intersect this ideal point have the form
7 = (0,v2,v3,v4) ", hence the problem reduces to that of
finding two lines within the YZ plane cross section data.
Both worldspace limb swing planes are approximately par-
allel. Due to experimental noise the cross section data points
are best fitted to two lines with a common normal.

We evaluate the mean (7, Z) T of the cross section point
distribution and apply a translation Hy that maps this point
to the origin. The two cross section plane lines 1; and 15,
computed by orthogonal regression, are then aligned paral-
lel with the Y axis by applying the rotation H,. The trans-
formed lines 1 = Hf—rli can be re-normalized such that
1} = (0,1,—¢;) ", 1, = (0,1,—c2) " in order that we can
find the points at which they cut the Z axis (c1, ¢2). We then
apply a further similarity transform Hg that translates the

mid point (¢ + ¢1)/2 to the origin and scales in the Z direc-
tion to rectify the lines to the form 1 = (0,1, +1)". Appli-
cation of a plane selection transform Hg translates by +1
mapping the selected set of points onto the z = 0 plane.

H, = H;H,H, H, (1)

The projection transform mapping the computed z = 0
plane points W to normalized image points X is given by.

]
() =R kel (g g )W @

The augmented 4 by 4 matrix inverse ﬁ; ! has the form:

1 00 O
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The corresponding projection transformation of worldspace

points W = (u,v,0,w)" into the image is then given by
the 3 by 3 homography mapping * = H, - (u,v,w) .

Hp=[e€¢ mj (m)-5-mi—Fk-e)] (4

where m), = Re ' m; ande’ = R ' - (1,0,0)7

We finally find both sets of optimal z = 0 plane points
by solution of the D.L.T. ([%y g]xHp(k,3)) -0t =0, for
each point i in order to minimize image reprojection error.

2.2. Recovering Metric Structure

Structure on the z = 0 plane has been recovered up to an
affine ambiguity. We need to find the affine transform H,
that maps the imaged circular points (1, 44 - A,0) " back
to their canonical positions (1,44,0) .

1 0 0
H,= [ —u/x 1A 0 s)
0 0 1

We can recover metric structure on the plane by using
the known ratios of lengths [5] between articulated limb
landmark points over all reconstructed frame poses. The
skeletal structure is rigid hence the length ratio of a limb
segment should remain fixed (unity) over all frames. The
squared distance between any two limb segment endpoints
X, X1 can be written d? = AXTAX, where Ax = (u; —
ug, V1 — vO)T. If Ax; and Ax, are the pose difference
vectors for a corresponding limb segment at two different
frames then the equal limb length constraint can be written.
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Ax{ H'HAx, = Ax, H HAx, (6)

Writing Ax; = (0z;,6y;) and elements of the sym-
metric matrix M = H'Has m = (M1, M2, M) .

[ 02 — 623 2(6a36y} — 6236y3) Oy —dy3 |m=0
(7

Since m is defined up to scale then a minimum of two
such corresponding pose constraints are required. We stack
all constraints formed from all sets of combinations of same
limb frame poses on each swing plane. The rectification ma-
trix H,, is formed from the extracted parameters of H' H,

where © = —% and A = , /% — p2. The ideal epipole
(1,0,0) " is mapped by H,, to (1, —u/A,0)" so we must
also apply a rotation H, to align the epipole back along the
X axis such that H, = H.H,, is the affine transform that re-
covers metric angles and length ratios on both planes. Points
on the metric plane W are then mapped into the image as:

% = HpyH, '(Ha.0) = H% (8)

We are only interested in limb length ratios, so scalings
are applied to both planes in order to transform each first
limb segment to unit length. In practice many data points
may be missing due to occlusion. Even in the ideal case
where motion is frontoparallel the hip point on the occluded
side of the body may never be imaged. To robustly com-
pute the scaling transforms we first compute H., the scal-
ing between both swing planes. We evaluate the mean set of
limb lengths for both planes d, d’. These lengths are related
by the inter-plane scaling: d; = 7 - d;. A minimal solu-
tion to this trivial set of linear equations requires at least
one valid length correspondence within the set of limb seg-
ments. With H, now known we find the optimal first limb
segment length al on the first plane. We then compute the
scaling transform Hg that maps d; to the unit length and
update both sets of points and projection homographies.

H;=H;H,”' = [pi/s p2/s ps | ©)
HH, '"Hy,™' = [pi/s-7 pa/s-7 ph]
H, = [ p1/s P2/s T-ph } (10)

where p; are the column vectors of the swing plane
transforms HpHa_1 with £ = 0 and 8 = F1 within eqn. 4.

2.3. Recovering Gait Dynamics

Recompute the true metric structure w; from the real nor-
malized image points x; by applying the inverse mappings
w; = H; 'x} and w} = H, 'x/. Resolve the four-fold X,Y

reflection ambiguity of the metric plane by consideration of
the gross spatiotemporal motion structure. Two smoothed
data vectors 11, @', generated from the mean X coordinate
positions of limb points over a centred 3 frame window, are
computed and fitted to a linear velocity model with a pair of
simultaneous equations: @; = v, -i+ug and @; = v, -i+uy.

We choose to normalize gait sequences to emulate a left
to right walk, so ensure that v, is positive by applying a re-
flection about the Y axis and update both points w;, w/ and
homographies. The reflection about the X axis, to ensure
that the sky is upward, is determined from the Y coordinate
ordering (hip — knee — ankle) of the means of each limb
point over all frames. The only remaining ambiguity is the
translation between both sets of plane points.

Normal gait is bilaterally symmetric with a half phase
shift. For each limb segment compute, both plane limb an-
gle sets and their corresponding time sample vectors. We
concatenate the angle vectors A = (a',a’") T and time sam-
ple vectors S = (t7,t'T + 1T7) T then determine, with
fixed fundamental frequency fo, the Fourier series represen-
tation of the limb angle function. With the knowledge of the
normalized limb lengths D we can find by back substitution
both sets of origin limb points 0, o’. We then compute two
vectors of smoothed X origin limb data generated from the
mean positions over a centred 3 frame window, and fit the
linear velocity model to the pair of simultaneous equations
in t. This gives a reasonable estimate of the linear veloc-
ity component and initial X offset points (ug, u() of gait on
the metric plane. We now compute a partitioned bilateral
Fourier series representation of the origin point displace-
ment function with sample data o, o’.

u(t) = vpt+uo+ Z Ay cos(2mk fot + dr) (11)
k=1
n 1
u(t) = vt +uy+ Z Ay cos(2mk fo(t + ET) + or)
k=1

We make an initial first harmonic approximation by par-
titioning the parameter vector Py = (v, A1, ¢1 | uo, uh) .
The computed estimates of P; are then used to bootstrap
the full partitioned parameterization.

P:(vszlvd)la"' aAn7¢n |u03u/0)—r (12)

The Y component origin limb point displacement func-
tion is similar, though v, is held fixed (zero). Both are
computed using a partitioned Levenberg-Marquardt algo-
rithm with fixed fundamental frequency fy. The transla-
tions H,, H. then map the starting origin limb point dis-
placements (ug,vg) " , (uf,vy) ' to the origin. We finally
apply the inverse normalization transform to the updated ho-
mography mappings Kn_lH,’i. The homography projection
functions then map metric plane points into the image as:
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X1 (t) =

X9 (t) -

[hi hy hs Jg(t: fo,D, XY, V) (13)
[ hl hz hé ]g(t—‘rT/Qfo,D,X,Y,V)

where g(¢) is the bilateral Fourier series function, X, Y
are the velocity and Fourier coefficients of the metric plane
origin limb displacement functions and V the Fourier coef-
ficients of the set of limb pose angle functions.

3. MAXIMUM LIKELIHOOD ESTIMATION

We can better model a limb plane pose by first applying a
rotation H,, about the X axis to facilitate the swing plane
inclination to the vertical, then apply the plane selection
translation Hg to map the required hip point to F1. This
is followed by a scaling H - in the Z direction that generates
the correct distance between both hip points. Initially o = 0
and the set of limb plane pose projections H have the form

Hi = m (¢ -my—s,-m3) (my—ms) |

Hy=| m; (cq -mo+ S, m3)

—

(my +mj) |
(14)
where ¢, = cosa, S, = sina, m; = h;, my = ho,
m; = 1(h} — hs) and my = 3(hj + h3) from eqn. 13.

As a final optimization step we perform a bundle ad-
justment procedure that minimizes reprojection error with
respect to all parameters P of the gait projection function.
Good reconstruction results have been achieved with n =
5 Fourier coefficients and cameras with frame rates > 25

frames per second. Writing M = (m{ ,mJ ,mj ,m,,a)"

P:(MTaf()»DTaXTaYTvVT)T (15)

4. RECONSTRUCTION RESULTS

A synchronized, uncalibrated three camera system (30 fps)
is set up, each with a different type of lens. Four sub-
jects, whom have retro-reflective marker balls attached to
the principle joint features of the skeletal system, are told
to walk along a linear trajectory through the field of view
of all cameras. The acquired image sequences are manually
marked and the reconstruction process performed. Since
image acquisition is simultaneous and gait dynamics con-
sistent in all three views the only parameters that differ be-
tween image sequences are the camera intrinsic and extrin-
sic parameters.

5. CONCLUSIONS

‘We have demonstrated that gait has sufficient properties that
allows us to exploit the structure of articulated motion in or-
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Fig. 4. Reconstruction of upper leg gait angles for subject 1.
The corresponding unrectified angles are shown in fig. 2.
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748 | 6.17 | 9.03 1.63 | 2.54 | 2.39
8.54 | 548 | 8.37 1.69 | 2.81 | 2.47
8.79 1 9.89 | 9.89 237 | 2.36 | 2.54
3.5 | 3.71 | 6.73 1.41 | 1.95 | 2.15
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Table 1. Comparison of root mean square pixel reprojection
errors for the reconstructed gait motion in the left, middle
and right camera views (L, M, R).

der to remove the unknown camera and pose ambiguities
and reconstruct the underlying gait signature. In the context
of biometric gait analysis this is a positive step toward mak-
ing already established and future techniques more robust to
changes in pose. Further analysis needs to be done to vali-
date its potential usefulness for identification at a distance.
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