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Abstract — The paper deals with the problem of blind
source separation in fMRI data analysis. Our main con-
tribution is to present a maximum likelihood based method
to blindly separate the brain activations in an fMRI ex-
periment. Choosing the time frequency domain as the
signal representation space, our method relies on the sec-
ond order statistics and exploits the inter-source diver-
sity. It is efficiently implemented by the EM (Expectation-
Maximization) algorithm where the time courses of the
brain activations are considered as the hidden variables. The
successful separation of the right and left visual cortex acti-
vations during a visual fMRI experiment and the extraction
of only the relevant tasks corroborate the effectiveness of
our proposed separating algorithm.

I. Introduction

In this paper, we consider a noisy linear instantaneous
mixture:

xt = Ast + nt, t = 1, ..., T,

where where xt is the (m × 1) vector of observations at
the time t, st is the (n × 1) vector of sources, A is the
(m × n) mixing matrix and nt the noise vector assumed
to be white and stationary (with unknown covariance Rn).
The challenging aspect of the BSS problem is the absence of
any exact information about the mixing matrix A (see [1,2]
for an overview of the blind source separation problem).

Based on i.i.d source modeling, many proposed algo-
rithms are designed to linearly demix the observations
x1..T . The separation principle in these methods is based
on the statistical independence of the reconstructed sources
(Independent Component Analysis) [3–7]. However, ICA
is designed to efficiently work in the noiseless case. In addi-
tion, with the i.i.d assumption, the separation necessarily
relies on high order statistics and treating the noisy case
with the maximum likelihood approach leads to compli-
cated algorithms [8–10].

Discarding the i.i.d assumption, source separation can
be achieved with second order statistics. For instance, sec-
ond order correlation diversity in the time domain [11],
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frequency domain [12] or time frequency domain [13] are
successfully used to blindly separate the sources. Non sta-
tionary second order based methods are also proposed in
[14–17]. Stationarity and non stationarity can approxi-
mately be seen as dual under Fourier transformation. We
have recently proposed a maximum likelihood method to
separate noisy mixture of Gaussian stationary sources ex-
ploiting this temporal / spectral duality [18,19]. The Gaus-
sian model of sources allows an efficient implementation of
the EM algorithm [20]. In this contribution, we extend this
approach to deal with non stationary sources and a lim-
ited sample size of collected observations. Relying on the
maximum likelihood principle and the Short Time Fourier
Transform (STFT), our approach can be interpreted as a
regularized blind identification of the sources spectra. Our
method is based on the estimation of the mixing matrix,
the sources spectra and the noise covariance matrix. Thus,
the same algorithm is applied to overdeterminate and un-
derdeterminate cases without a prewhitening step. The
method implicitly incorporates a denoising procedure and
it is consequently robust to high level noise. The equations
involved in the EM algorithm are very simple to imple-
ment. An interesting property of the proposed solution
is the exploitation of second order spectral non station-
arity. The frequency marginal spectrum (integrating over
time the spectrograms) corresponds to an improved ver-
sion of the separation of noisy stationary sources [18] as the
smoothed periodograms, obtained by marginalization, are
used instead of the empirical periodograms (corresponding
to the Wigner-Ville distribution marginals).

The paper is organized as follows. Section II is devoted
to the main contribution of this paper. We develop the EM
algorithm implementing the maximum likelihood solution
in the time frequency domain. The likelihood criteria is in-
terpreted a regularized matching between the spectral co-
variances. In Section III, simulations on real fMRI signals
illustrate the effectiveness of our proposed method compar-
ing to the ICA solution.
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II. Regularized Spectral Matching

The temporal fMRI separation relies on the following
mixing model:

X = AS + N

where X is the (M × T ) matrix of observations, the col-
umn X(:, t) contains the scanned image acquired at the
time t and M is the number of voxels in one brain slice.
The (N × T )-matrix S (the sources) contains the N time
courses rows. The (M ×N) mixing matrix A contains the
N brain region activations. Each column (M × 1) of A

represents a source image and it is time invariant. Thus,
the column S(:, t) represents the linear combination at the
instant t to produce the image X(:, t) (See Figure 1 for
illustration). The matrix N models the noise corrupting
the observations. The advantage of taking into account
the noise in the model is to allow the separating algorithm
to only extract the relevant sources, that is the event re-
lated brain activations. This is possible when the spectral
profile of the noise is flat comparing to the more concen-
trated source spectra. In fact, the time courses of event
related activations present the same frequency content as
the stimulus.

Some of the real signals collected in fMRI imaging are
obviously non stationary. However, the time courses cor-
responding to regions which activations are event related
are approximately stationary. In addition, their spectral
behavior encloses the signature of the stimulus presented
to the subject during scanning. The difficulties thus arising
when separating the different temporal brain activations
are the following:

1. The observations are mixture of two types of sources:
stationary sources (event related activations, thermal
noise,...) and non stationary sources (artifacts).
2. The moderate time duration of scanning within the lim-
ited spectral information provided by time courses make
the blind mixing identification a difficult task. In fact, the
success of blind separation relies on a good spectral es-
timation since it is based on structuring the observation
covariance matrices according to the linear mixing model.
3. The noise N is not white and especially when the obser-
vation model is modified to segregate task related signals
from non task related signals, that is the observation pro-
cess is written as,

X = AtrcStrc + AartSart + N

where the subscript ”trc” refers to task related compo-
nent and the subscript ”art” refers to artifact components.
Thus, the effective noise Ñ is a composition AartSart +N

of mixed artifacts and physical noise. It yields a spatial
structure due the matrix Aart and a time correlation due
to presence of artifacts Sart.
4. The sources, in particular the event related ones, are
correlated. Therefore, the basic assumption in ICA is no
more valid as the sources are not statistically independent.
This fact corroborates the use of the Bayesian approach
where one could take into account such correlation in the
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Fig. 1. Example of an fMRI experiment: (a) the image scanned at the
time t = 5s, it is represented by the column X(:, t = 5), (b) Time
courses of four different voxels located at ν1 = (25, 10, 10), ν2 =
(25, 3010), ν3 = (10, 30, 10) and ν4 = (35, 10, 10), they are repre-
sented by the rows of the matrix X: X(ν1, :), X(ν2, :), X(ν3, :),
and X(ν4, :)

source covariance matrix Ps by introducing non null extra
diagonal elements.

In the following, we outline the proposed EM algorithm
called hereafter the ”Regularized Spectral EM” as it is the
extension of the Spectral EM [18] and show some separa-
tion results on noisy real fMRI data.

The Short Time Fourier Transform (STFT) of a signal
{x(t)} is a windowed Fourier transform defined as:

Sx(t, ω) =

∫

x(τ)h(τ − t)e−jωτd τ,

where h is the moving window capturing the signal non
stationarity. It is shown that the squared modulus of Sx

(called the spectrogram) belongs to the Cohen’s Class with
the kernel φ equal to Wh, the Wigner-Ville distribution of
the window h. Thus, the spectrogram enjoys the positivity
property but does not conserve the marginal properties of
the Wigner-Ville distribution.

Exploiting the linearity of the STFT transform, the noisy
linear mixture model conserves its algebraic form under



3

this transformation:

x(t, ω) = As(t, ω) + n(t, ω), t = 1..T, ω = 1..F,

where, for the sake of clarity, x, s and n also denote
the STFT transforms of the observations, the sources and
the noise respectively. Assuming that the noise is sta-
tionary white (with unknown covariance Rn) and that
the sources are decorrelated in the time frequency do-
main1 (with unknown diagonal covariances {P (t, ω) =
E

[

s(t, ω)s(t, ω)∗
]

}ω=1..F
t=1..T ), the likelihood is as follows:

p(X | θ) =

∫

p(X | S, A, Rn)p(S | {P (t, ω)})d S

=
∏

t,ω

∫

p(x(t, ω) | s(t, ω), A, Rn)p(s(t, ω) | P (t, ω))d s(t, ω)

=
∏

t,ω

|2 π Rt,ω|
−1 exp

[

−Tr
(

R
−1
t,ω x(t, ω)x(t, ω)∗

)]

,

(1)
where Rt,ω = APt,ωA∗+Rn and θ is the whole parameter
to be estimated (A, Rn, {P (t, ω)}).

The likelihood (1) can be interpreted as the matching
between STFT covariances matrices Rt,ω = APt,ωA

∗+Rn

and empirical covariances R̂t,ω = x(t, ω)x(t, ω)∗, in the
Kullback-Leibler metric:

log p(X | θ) = −
∑

t,ω

DKL(Rt,ω l R̂t,ω) (2)

A. Time frequency EM algorithm

The first step of the EM algorithm is the computation

of the functional Q(θ, θ(m−1)):

Q(θ, θ(m−1)) = E
ˆ

log(X, S | θ) | X, θ(m−1)
˜

= E
ˆ

X

t,ω

− log |Rn| − Tr
`

R
−1
n [xt,ω − Ast,ω ] [xt,ω − Ast,ω ]∗

´

+
X

t,ω

− log |Ps(t, ω)| − Tr
`

P
−1
s (t, ω) [st,ω ] [st,ω ]∗

´˜

Defining the following statistics which will be computed
later:























Rxx(t, ω) = xt,ωx∗
t,ω

Rxs(t, ω) = xt,ωE
[

st,ω | xt,ω, θ(m−1)
]∗

Rss(t, ω) = E
[

st,ωs∗
t,ω | xt,ω, θ(m−1)

]

(3)

1The decorrelation assumption of the time frequency source points
is only statistically valid for underspread signals, i.e. the ambigu-
ity function is concentrated in a small neighborhood of the origin
[21]. However, our main objective is the estimation of the unknown
parameters and not the filtering of sources.

the functional Q can be rewritten in the following form:

Q(θ, θ
(m−1)) =

∑

t,ω

− log |Rn| − Tr(R−1
n [Rxx(t, ω)

+ARss(t, ω)A∗ − ARsx(t, ω) − R
∗
sx(t, ω)A∗])

+
∑

t,ω

− log |Ps(t, ω)| − Tr
(

P
−1
s (t, ω)Rss(t, ω)

)

(4)

The second step is the update of the parameter θ by
maximizing the functional Q(θ, θ(m−1)):

θ
(m) = argmax

θ

Q(θ, θ(m−1))

This can be achieved by differentiating the functional Q
(4) with respect to the parameter θ and then equating to
zero the partial derivatives. We obtain the following simple
updating equations:







A(m) = RxsR
−1
ss

R
(m)
n = Rxx − RxsR

−1
ss Rsx

Ps(t, ω) = diag(Rss(t, ω))

(5)

where the matrices Rxx, Rxs and Rss are the average of
the statistic matrices Rxx(t, ω), Rxs(t, ω) and Rss(t, ω) de-
fined in (3), over the time frequency domain.

The computation of the statistic matrices (3) is essen-
tially based on the computation of the a posteriori first
and second moments of the source vector st,ω. Thanks to
the a priori Gaussianity of sources and noise, the a poste-

riori distribution of the sources is also Gaussian with the
following moments:

{

E
[

st,ω

]

= Wt,ωxt,ω

E
[

st,ωst,ω

]

= Vt,ω + E
[

st,ω

]

E
[

st,ω

]∗

where the matrices Wt,ω (Wiener matrix) and Vt,ω (a pos-

teriori covariance) have the following expressions:

{

Wt,ω =
[

A∗R−1
n A + P−1

s (t, ω)
]−1

A∗R−1
n

Vt,ω =
[

A∗R−1
n A + P−1

s (t, ω)
]−1

We note that the equations are very similar to a time fre-
quency Wiener filtering. Consequently, the EM algorithm
involves an implicit denoising procedure when computing
the first a posteriori moment of the sources. In other words,
we have an optimal source reconstruction at each step of
the algorithm. It is worth noting that the achievement of
the separation solution is strongly linked to the diversity
of the sources spectrograms (the diagonal time frequency
distributions of the matrices P (t, w) are different). This
is the fundamental reason to perform the separation in the
frequency domain when the only temporal statistics are not
able to provide such diversity.

B. Spectrum Regularization

The estimation of the parameter θ involves the estima-
tion of the whole spectrograms ({Ps(t, ω)}ω=1..F

t=1..T ) which
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are smoothed versions of the Wigner-Ville spectra. In order
to accelerate the EM algorithm, we can partition the time
frequency domain into L horizontal sub-domains {Dl}

L
l=1

and then estimate the averaged spectrograms inside these
domains. This is algorithmically equivalent to assume that
the spectrograms are constant in the sub-domains in the
partitioned time frequency 2-D field. Figure 2 illustrate
the horizontal segmentation of the time frequency domain.

Frequency

Time

Sub-domain Dl

Fig. 2. Marginal partitioning of the Time Frequency domain: ex-
ploitation of the spectral non stationarity.

In the following, we show how the expressions of the
updating equations of the EM algorithms are very suitable
for such approximation.

We assume that Ps(t, ω) = Pl for all (t, ω) ∈ Dl and the
likelihood function can be rewritten as follows:

p(X | θ) =

L
∏

l=1

|2 π Rl|
−wl exp−Tr



R
−1
l

∑

(t,ω)∈Dl

xt,ωx
∗
t,ω





(6)
where wl = |Dl| and Rl = APlA

∗ + Rn which is constant
in the sub-domain Dl.

As the spectral coefficients are constant in each sub-
interval Dl, the statistics are easily computed. In fact,
the matrices Vt,ω = Vl and Wt,ω = Wl are constant over
each sub-domain Dl and the statistics are:































Rxx(l) = 1
wl

∑

(t,ω)∈Dl

xt,ωx
∗
t,ω −→ computed off line

Rxs(l) = Rxx(l)W ∗
l

Rss(l) = WlRxx(l)W ∗
l + Vl

(7)
Then, the statistic matrices Rxx, Rxs and Rss are the
weighted sums of Rxx(l), Rxs(l) and Rss(l) (with weights
{wl}l=1..L) and both the mixing matrix A and the noise
covariance Rn are still updated according to the equation
(5). The sources spectrograms are updated according to
the following equation:

Pl = diag(Rss(l))

Remark 1: An interesting property of the EM algorithm
is the fact that the computation of the statistic matrices
Rxs(l) and Rss(l) relies on an off-line computation of the
observations spectrograms Rxx(l). The computation of the

a posteriori expectation of sources is no more necessary
leading to a fast implementation of the EM algorithm.

Partitioning the time frequency domain into horizontal
bands sub-domains {Dl}, the matching of STFT spectra
leads to the same algorithm as in [22] exploiting the tem-
poral stationarity but with regularized spectra. In fact,
the projection of the STFT spectrum yields the windowed
power spectrum. In Figure 3, we have plotted an fMRI time
course in time, its spectrum, its STFT transform and the
windowed periodogram (projection of the spectrogram) il-
lustrating the effect of smoothing the spectrum of an fMRI
time course. Maximizing the likelihood is then equiva-
lent to matching the windowed periodograms according to
equation (2). Thus, the method will essentially consist in
maximizing the likelihood of the parameters based on the
Gaussian modeling of the sources.

As the computation of the observations spectra is per-
formed off-line, the structure of the algorithm is indepen-
dent of the partition choice. In fact, the algorithm is only
based on matching the computed matrices to structured
matrices according to the mixture model. Hereafter the
pseudo code of the Regularized Spectral EM algorithm:

Regularized Spectral EM
1 : Initializing:

2 : Off line computation of the smoothed
covariances Rxx(l)

3 : Initial values for A, Rn and Pl

4 : repeat until convergence,

5 : //----- E-step -----//

6 : computation of statistics for l=1 to L,

7 : Vl =
“

AR
−1
n A∗ + P

−1
l

”

−1

8 : Rxs(l) = Rxx(l)R−1
n AVl

9 : Rss(l) = VlA
∗R

−1
n Rxx(l)R−1

n AVl + Vl

10 : end of loop on l,

11 : Rxs = 1
K

X

wl Rxs(l)

12 : Rss = 1
K

X

wl Rss(l)

13 : //------M-step------//

14 : A = RxsR
−1
ss

15 : Rn = diag(Rxx − RxsR
−1
ss R∗

xs)
16 : Pl = diag(Rss(l)), for l=1 to L
17 : Renormalize A and Pl

18 : end of repeat

(8)

III. Illustration on fMRI data

The Regularized Spectral EM algorithm was applied to
separate the time courses of fMRI data acquired at the
FM Kirby Center for Functional Brain Imaging. The ex-
periment consisted of presenting two periodic visual stim-
ulus, shifted by 20 s from one another, to the subject. The
stimuli consisted of an 8-Hz reversing checkerboard pattern
presented for 15 s in the right visual hemifield, followed by
5 s of an asterisk fixation, followed by 15 s of checkerboard
presented to the left visual hemifield, followed by 20 s of
an asterisk fixation. The 55 s set of events was repeated
four times for a total of 220 s. Scans were acquired on
a Philips NT 1.5-Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
scan [repeat time (TR) = 500 ms, echo time (TE)= 30 ms,
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field of view = 24 cm, matrix = 256 × 256, slice thickness
= 5 mm, gap = 0.5 mm] consisting of 18 slices through the
entire brain including most of the cerebellum. Next, we ac-
quired functional scans over the same 18 slices consisting
of a single-shot, echo-planar scan (TR=1 s, TE= 39 ms,
field of view = 24 cm, matrix= 64 × 64, slice thickness =
5 mm, gap = 0.5 mm, flip angle = 90 degrees) obtained
consistently over a 3-min, 40-s period for a total of 220
scans.

Our method is tested on two different slices where we ex-
pect, in each, two different event related components corre-
sponding to the alternating activation of the right and left
visual cortex as a response to an alternating visual stimulus
presented to the subject.

The results of the proposed algorithm applied to the first
data set (slice 10) are shown in Figure 4, where we have
plotted three recovered image sources (the three columns of

the estimated mixing matrix Â) within their correspond-
ing estimated time courses. We note the ability of the
algorithm to extract the sources which have a time course
correlated with the stimulus. The first and third sources
correspond to the alternative activations of the right and
left visual cortex as expected from the conditions of the
stimulus presented to the subject. However, the algorithm
extracts also another source (the second one) which has a
spectral density similar to the first two sources. This shows
that fixing the number of sources by intuitive expectation
based on the experiment paradigm leads to wrong results.
The results shown in Figure 4 were obtained by varying
the number of sources and then studying a posteriori the
results after convergence of the EM algorithm. An auto-
matic selection of the number of components is thus needed
for a complete blind analysis of the fMRI data. Figure 5
illustrates the times courses of the right and left visual cor-
tex regions. We note the periodicity of the time courses
and their relative inter-delay (around 20 s) corresponding
to the inter-delay of the stimulus (the checkerboard pat-
tern was presented alternatively to the right and left visual
hemifields). Figure 6 shows the spectrograms and the reg-
ularized spectra of the estimated three times courses. For
comparison purposes, we reported the separation results of
a temporal ICA InfoMax algorithm on the same data set,
in Figure 7. We have fixed the number of sources to 3.
The ICA algorithm fails to extract the third source from
the two alternative task related sources identified with the
EM algorithm, mixing them with a higher frequency com-
ponent.

In Figure 8, the results are plotted for the another slice
(slice 14) characterized by a higher noise level than the pre-
vious slice. We note the ability of the algorithm to recover
the sources as well. For this slice, we have processed only
110 timepoints as the acquisition rate was divided by 2 in
the same experiment conditions as the data acquisition for
the slice 10. Figure 9 illustrates the estimated time courses.
We note their correlation with the expected activations of
the brain as a response to the presented stimulus. The time
delay is about 10 timepoints corresponding to the 20 s of
the shift between the alternative periodic right and left

visual stimulus. The InfoMax ICA algorithm gives poor
results essentially because of the presence of noise in the
processed data. This is to be expected as, in the ICA so-
lution, we assume a noiseless observation model.

IV. Conclusion and Perspectives

We have presented an EM algorithm to deal with real
data suffering from non stationarity and a lack of enough
points for spectral analysis. The separation method is es-
sentially based on the diversity of the source smoothed pe-
riodograms. The non stationarity of second order statistics
allows the mixing matrix identification without resorting to
higher order statistics. The use of second order statistics
(in other words, the Gaussian modeling) leads to an ef-
ficient and fast implementation of the EM algorithm. In
fMRI data analysis, we have exploited this diversity be-
tween the time course spectra. The spatial pixel distribu-
tions represent the columns of the mixing matrix. There-
fore, the Regularized Spectral EM algorithm allows a blind
joint estimation of the brain source images within the spec-
tra of their time courses. The event related sources are eas-
ily distinguished by the signature of the stimulus in their
time course spectra.
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Fig. 3. Time frequency behavior of fMRI time courses: (a) fMRI time
course of an event related activated region in the visual cortex,
(b) non event related fMRI time course. The projection of STFT
signal transform has a smoothness effect on the spectrum.
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Fig. 4. The recovered sources with the Regularized Spectral EM
algorithm for slice 10. The first and third sources correspond to
the left and right visual cortex activations.
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Fig. 5. The recovered time courses with the Regularized Spectral
EM algorithm. Their temporal inter-delay is about 20 s corre-
sponding to inter-delay between the alternative temporal stimu-
lus presented to the subject.
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Fig. 6. The spectrograms of the estimated time courses: First, third
and second according to the ordering in Figure 4.
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Fig. 7. The recovered sources with the ICA InfoMax algorithm for the
Slice 10. The alternative task related sources are not separated
from the transient signal (the image in the middle of the Figure
4).
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Fig. 8. The recovered sources with the Regularized Spectral EM al-
gorithm for the slice 14. The first and second sources correspond
to the right and left visual cortex.
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Fig. 9. The recovered time courses the Regularized Spectral EM al-
gorithm. We note the periodicity and the inter-delay compatible
with the periodicity and the inter-delay of the alternative left and
right stimulus presented to the subject during scanning.
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Fig. 10. The recovered sources with the ICA InfoMax algorithm for
the slice 14 in a high noise environment. The sources are not
identified.


