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ABSTRACT
In this paper, we present two rate allocation algorithms for embed-
ded motion compensated video coders. The algorithms are based
on the modeling of both the video signal and the coder which al-
low us to express the coding distortion with a recurrence equation.
Our algorithms assign rates to the frames of each Group of Pic-
tures (GOP) of a video sequence in an optimum way. In the first
algorithm, the criterion is to minimize the average (MINAVE) dis-
tortion and in the second to achieve constant distortion (CD) in all
frames. Numerical simulations show the MINAVE criterion can
introduce large variations in quality with no significant gains in
average distortion with respect to the CD criterion. We also show
how the the motion estimation accuracy and the GOP length influ-
ence in both strategies.

1. INTRODUCTION

In embedded coders, the rate can be set and changed in an easy
and precise way [1–3]. This property allows these kinds of coders
to adapt to changes in the available bandwidth and to different re-
ceiver capabilities. Furthermore, directly controlling the rate [4]
is not necessary and just rate allocation (RA) algorithms are re-
quired to distribute the available bits between the different cod-
ing units (e.g., frames and macroblocks). Thanks to these advan-
tages, embedded coding has been included in the image compres-
sion standard JPEG2000 [3] and in the video streaming profile of
the standard MPEG-4 [5]. In this paper, we present two bit alloca-
tion algorithms for Motion Compensated Embedded (MCE) video
coders.

Two main approaches exist for the RA problem: algo-
rithms based on models [6] and algorithms based on operational
rate-distortion (R-D) optimization [7]. Rate allocation algorithms
based on models can provide closed-form expressions and have
a low computational cost, but the allocations provided can be
far from the optimum ones because it is difficult to model video
sources and coders accurately. On the other hand, algorithms
based on operational R-D optimization provide exact optimum so-
lutions for each particular signal and coding algorithm but at the
expense of a higher computational cost. This computational com-
plexity is especially high when they are used to optimize MCE
video coders, due to the temporal dependency between frames and
the very large number of points on the R-D curve of embedded
coders.
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In this paper, we present two RA algorithms for MCE video
coders assuming models for both the video sequences and the mo-
tion compensated prediction operation of the video coder. We as-
sume that the coding algorithm segments the video sequence in
groups of pictures (GOP) which are coded independently. The first
RA algorithm provides a minimum average (MINAVE) distortion
in the frames of the video sequence. As large quality variations
in the frames of the video sequence are annoying visually, some
RA algorithms try to achieve constant distortion (CD) instead of
minimizing the average distortion [8]. Our second RA algorithm
provide constant distortion in all frames in the GOP.

The paper is organized as follows. In Section 2, we describe
the models used and the hypotheses assumed in our analysis. In
Section 3, we analyze the efficiency of the embedded MCP-based
video coder assuming input video signals are partitioned in GOPs
of equal length. In Sections 4 and 5, we present the minimum aver-
age distortion and the constant quality RA algorithms respectively.
In Section 6, we show numerical results of both algorithms for dif-
ferent motion estimation accuracy and GOP lengths. Finally, in
Section 7 we summarize our results and comment on future work.

2. MODELS AND HYPOTHESES ASSUMED

In the following, x and y are the spatial variables, and t is the
temporal variable of the digital video sequence, with x, y, t ∈ Z.
Their corresponding frequency variables are ωx, ωy and ωt re-
spectively. For simplicity, sometimes we use Λ = (ωx, ωy) and
since in our study the signals and systems involved are discrete,
when specifying spatial spectra of signals or frequency responses
of systems we only specify them in the base-band, that is, in ΛB =
{(ωx, ωy)| − π ≤ ωx, ωy ≤ π}. When there is no loss in clarity,
some signal variables or even all of them are removed.

In our theoretical analysis we make some assumptions about
the signals and systems involved. The quantization noise q[t] in-
troduced in the intra-frame encoding of the t-th frame is modeled
as an additive zero-mean white noise whose variance σ2

q [t] is

σ2
q [t] = σ2

e [t] 2−βtRt (1)

where σ2
e [t] is the power of the predicted error frame e[t], Rt is the

rate used to encode the t-th frame and βt is a parameter that mea-
sures the efficiency of the intra-frame coding of the t-th frame [6].
The value of parameter β depends on frame content and on the
type (intra/inter) of frame encoding. We assume the quantization
noise is uncorrelated with the signal that is being quantized, which
is approximately valid for large R.
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The rest of assumptions are similar to the ones assumed in [9].
With respect to the input video signal s, we assume that its frames
constitute a stationary discrete random field and that the only
difference between consecutive frames is a constant-in-time and
uniform-in-space displacement (dx,dy). The predictor is mod-
eled as a random linear time-invariant system whose frequency
response is

H(ωx, ωy, ωt) = F (ωx, ωy) e−j(ωxd̂x+ωy d̂y+ωt) (2)

where F (ωx, ωy) is the frequency response of a spatial filter and
(d̂x,d̂y) is the estimated (random) displacement vector. In general,
in the motion estimation there is a random displacement error vec-
tor ∆d = (∆dx, ∆dy), where

(∆dx, ∆dy) = (dx, dy) − (d̂x, d̂y) (3)

with a probability density function p∆d(∆d).
Although in real video sequences the hypothesis of a constant-

in-time and uniform-in-space translational motion is not accurate,
it allows study of the rate allocation problem and demonstrates
the influence of different factors, e.g., motion estimation accuracy,
intra-frame coding efficiency, and GOP length. In our analysis,
the rate needed to encode the motion vectors is ignored; this does
not have an important influence except when encoding at very low
rates.

3. ANALYSIS OF THE MCE VIDEO CODER

Figure 1 shows the block diagram used to analyze the efficiency
of a motion compensated embedded video coder. The input of
the transmitter is a monochrome discrete stationary video signal
s[t] of N frames (0 ≤ t ≤ N − 1). We assume the first frame
(t = 0) is intra-coded (I-frame) and the rest (1 ≤ t ≤ N − 1) are
inter-coded with previous-frame-based prediction (P-frames). In
Figure 1, intra or inter coding depends on the switches’ state (intra
if open, inter if closed). In every instant of time t, the difference
between the original frame s[t] and a prediction of it ŝ[t] is com-
puted, generating a sequence of prediction error frames (PEF) e[t].
We assume the prediction of frame at time t is only based on the
previous frame (t−1). Prediction is based on a reconstructed frame
s′[t], which is a version of s[t] with quantization noise (q[t]). Mo-
tion Estimation (ME) is performed in order to estimate local dis-
placements between every pair of consecutive frames. In this way,
the encoder can make a motion compensated prediction (MCP) of
every input frame, which is represented in Figure 1 by the filter
H . Each PEF e[t] is encoded using an intra-frame encoder that
performs transform, quantization and entropy coding. Each com-
pressed frame is then decoded (entropy decoded, dequantized and
inverse transformed) in order to provide a distorted version of the
PEF (e′[t]) to the MCP loop of the encoder.

Thanks to the closed-loop structure of the MCE coder

r[t] = s′′[t] − s[t] = q[t] (4)

and consequently the distortion Dt of the t-th frame is

Dt = σ2
r [t] = σ2

q [t], 0 ≤ t ≤ N − 1. (5)

For a rate R, the rate allocation algorithm assigns a rate Rt to
encode each PEF e[t] (with a parameter βt).
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Fig. 1. Block diagram to analyze the MCE video coder.

The distortion of the I-frame is

D0 = σ2
s 2−β0 R0 (6)

where σ2
s is the power of the video signal. For the rest of frames,

the prediction error frame at time t can be expressed as

e[x, y, t] = s[x, y, t] − s[x, y, t − 1] ∗ h[x, y]

+ q[x, y, t − 1] ∗ h[x, y], 1 ≤ t ≤ N − 1, (7)

where “∗” denotes spatial convolution and h[x, y] is the impulse
response of a system that involves the spatial filtering (f [x, y])
and the spatial displacement (d̂x, d̂y). From (7), and after some
manipulations [10], we obtain

See(Λ, t) = Sss(Λ)
ˆ
1 − 2Re {F (Λ)P ∗(Λ)} + |F (Λ)|2

˜
+ |F (Λ)|2 Sqq(Λ, t − 1) (8)

where P (Λ) is the Fourier Transform of p∆d(∆d). After integra-
tion of (8) in ΛB we obtain

σ2
e [t] = Es + Dt−1Ef (9)

where σ2
e [t] is the PEF variance at time t, Es is

Es =
1

4π2

ZZ
ΛB

Sss(Λ)
ˆ
1 − 2Re {F (Λ) P ∗(Λ)} + |F (Λ)|2

˜
dΛ,

and Ef is

Ef =
1

4π2

ZZ
ΛB

|F (Λ)|2 dΛ. (10)

From (1) and (9) we obtain

Dt 2βt Rt = Es + Dt−1Ef , 1 ≤ t ≤ N − 1 (11)

which allows us to obtain Dt recursively with (6) being the initial
value of the recurrence.

4. RATE ALLOCATION FOR MINIMUM MEAN
DISTORTION

The RA problem providing minimum average distortion can be
formulated as:

minimize D =
1

N

N−1X
t=0

Dt (12)

subject to
1

N

N−1X
t=0

Rt = R. (13)



By using the Lagrange multiplier method, the constrained op-
timization problem in (12) and (13) can be transformed into an
unconstrained optimization problem, where the optimum RA strat-
egy is the set of rates minimizing the Lagrangian cost function

J(R0, . . . , RN−1) =
1

N

N−1X
t=0

Dt + λ

"
1

N

N−1X
t=0

Rt − R

#
.

(14)
To solve this MINAVE optimization problem, an algorithm

similar to the one described in [6] is used. In fact, we also use the
same R-D model to characterize the intra-frame encoding process
that in [6]. The main difference between our MINAVE algorithm
and the one present in [6] is how the frame dependency problem
is taken into account. In [6], the solution is mainly based on the
assumption that the variance of the motion compensated residue is
an affine function of the reference frame distortion through a pa-
rameter α. In our algorithm, the models and hypotheses described
in Section 2 allows us to obtain explicitly the dependency through
(11).

The optimum RA is achieved when

∂J(R0, . . . , RN−1)

∂Rt
= 0, 0 ≤ t ≤ N − 1, (15)

which, due to the temporal dependence between frames, provides

∂J

∂Rt
=

1

N

»
∂Dt

∂Rt
+

∂Dt+1

∂Rt
+ · · · + ∂DN−1

∂Rt

–
+

λ

N
= 0 (16)

for 0 ≤ t ≤ N − 1. For the last frame (t = N − 1), we have

∂DN−1

∂RN−1
+ λ = 0 (17)

which provides

DN−1 =
λ

βN−1 ln2
. (18)

If t = N − 2 in (16), we have»
∂DN−2

∂RN−2
+

∂DN−1

∂RN−2

–
+ λ = 0, (19)

which provides

DN−2 =
λ

βN−2 ln2
`
1 + Ef 2−βN−1RN−1

´ . (20)

Additionally, from (11) and (20), we obtain

D2
N−2+

»
Es

Ef
− λ

βN−2ln2
+ DN−1

–
DN−2−

λ Es

βN−2 ln2 Ef
= 0,

(21)
whose positive solution provides DN−2.

For other instants of time different to N − 1 and N − 2, the
following identity is useful

∂Dt+k

∂Rt
=

∂Dt

∂Rt
Ek

f

kY
l=1

2−βt+lRt+l , (22)

for 0 ≤ t ≤ N − 2 and 1 ≤ k ≤ N − 1 − t. If we define

Pt , 1 +

N−1−tX
k=1

Ek
f

kY
l=1

2−βt+lRt+l , 0 ≤ t ≤ N − 2 (23)

and PN−1 , 1, then (16) transforms into

Dt βt ln2 Pt = λ, 0 ≤ t ≤ N − 1. (24)

By taking into account

Pt = 1 + Ef 2−βt+1Rt+1 Pt+1, 0 ≤ t ≤ N − 2 (25)

Equation 24 can be written as

Dt βt ln2
“
1 + Ef 2−βt+1Rt+1 Pt+1

”
= λ, (26)

for 0 ≤ t ≤ N − 2. This last equation together with (11) provides

D2
t +

»
Es

Ef
− λ

βt ln2
+ Dt+1Pt+1

–
Dt −

λ Es

βt ln2 Ef
= 0, (27)

whose solution allow us to get Dt from Dt+1 and Pt+1 for 0 ≤
t ≤ N − 2. In fact, if we define

Bt ,
Es

Ef
− λ

βt ln2
+ Dt+1Pt+1 (28)

Ct ,
−λEs

βt ln2 Ef
(29)

then Dt can be computed trough

Dt =
−Bt +

p
B2

t − 4Ct

2
, (30)

for 0 ≤ t ≤ N − 2 (DN−1 can be computed from (18)).
With respect to the rates Rt, from (11) we obtain

Rt+1 =
1

βt+1
log2

Es + DtEf

Dt+1
, t = 0, . . . , N − 2. (31)

Then by using (25), (30) and (31) recursively, we can get the rates
of all frames for a value of λ. The recursion starts with DN−1,
whose value is obtained from (18), and with PN−1 = 1. Then,
by using (25), (30) and (31) recursively we can get Dt in t =
N − 2, . . . , 0 and Rt in t = N − 1, . . . , 1. Finally, R0 can be
obtained through

R0 =
1

β0
log2

σ2
s

D0
. (32)

The algorithm should be repeated for several λ values until the
rate constraint is met. Thanks to the convexity property of the
rate-distortion function, the bisection algorithm can be used.

It is straightforward to determine that if all P-frames have the
same β value (βt = βP in 1 ≤ t ≤ N − 1), then Dt has the
same value in 1 ≤ t ≤ N − 2 and Rt has the same value in
2 ≤ t ≤ N − 2. It is interesting to notice that, while assigning
the same number of bits for all P-frames in a GOP is usually used
as a non-optimum but simple RA strategy, when β is equal for
all P-frames, the MINAVE criterion assigns the same rate to all
P-frames except the first and the last one.

5. RATE ALLOCATION FOR CONSTANT DISTORTION

In this section we study the rate allocation (RA) problem for achiev-
ing constant distortion (CD). If all the frames have the same dis-
tortion, from (6) and (11) we get

σ2
s 2−β0 R0 =

Es

2βt Rt − Ef
, 1 ≤ t ≤ N − 1. (33)



which together with the rate constraint (13) constitutes a system of
equations whose solution is the RA providing constant distortion.
If βt = βP in 1 ≤ t ≤ N − 1, all P-frames must have the same
rate

Rt = RP, 1 ≤ t ≤ N − 1, (34)

and from (33) together with the rate constraint

RN = R0 + (N − 1)RP (35)

we get
Es

2βP RP − Ef
= σ2

s 2−β0[RN−(N−1)RP ] (36)

whose solution is the optimum RP (optimum R0 can be obtained
later from (35)).

6. NUMERICAL SIMULATIONS

In this section we show the results of numerical simulations ob-
tained when using the rate allocation (RA) algorithms of Sections 4
and 5 and the following settings. Similarly to [9], the input sig-
nal is the discrete random field (DRF) that results after an ideal
low-pass filtering and sampling of a continuous random field with
isotropic autocorrelation and one-step (in x and y) correlation co-
efficients ρ equal to 0.93. The variance of the DRF is σ2

s = 0.98.
We assume that ∆d follows a zero mean, Gaussian isotropic prob-
ability density function with variance σ2

∆d = 0.2 T 2 where T is
the spatial sampling period. The rate is R = 0.493 bits/pixel
(which for video in CIF format corresponds to 1.5 Mb/s), N = 15,
F (Λ) = 1, β0 = 6 and βt = 3 for 1 ≤ t ≤ N − 1.
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Fig. 2. SNR as a function of the frame number using the MINAVE
and CD criteria.

Figure 2 shows the SNR as a function of the frame number
obtained with the previously described settings for the MINAVE
and the CD strategies. Notice that the MINAVE strategy provides
large SNR variations in the two first and two last frames of the
sequence. Consequently, large quality fluctuations can be intro-
duced in the transitions between GOPs if the MINAVE strategy is

used. The MINAVE strategy, however, does not provide a signifi-
cant gain in average SNR with respect to the CD strategy (16.19 dB
with MINAVE and 15.96 dB with CD).

The gain in average SNR of the MINAVE strategy with respect
to the CD one does not vary significantly when we vary the motion
estimation accuracy (+0.254 dB if σ2

∆d = 0.05 T 2, +0.233 dB if
σ2

∆d = 0.2 T 2 and +0.231 dB if σ2
∆d = T 2). With respect to the

GOP length, the shorter the length, the larger the gain in mean SNR
of the MINAVE strategy with respect to the CD (+0.79 dB with
N = 5, +0.233 dB with N = 15 and +0.04 dB with N = 100).

7. CONCLUSION AND FUTURE WORK

In this work, we have presented two rate allocation algorithms
(MINAVE and CD) for embedded video coders using motion com-
pensated prediction. Numerical simulations shows that the MI-
NAVE criterion can introduce large variations in quality and only
provide significant improvement in average distortion with short
GOP lengths.
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