
CONFIGURABLE MOTION-ESTIMATION HARDWARE ACCELERATOR MODULE
FOR THE MPEG-4 REFERENCE HARDWARE DESCRIPTION PLATFORM

J. Dubois, M. Mattavelli(*), L. Pierrefeu, J. Miteran

jdubois@u-bourgogne.fr
Université de Bourgogne, Laboratoire LE2I

CNRS, Dijon, France,
(*)Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Institute, Signal Processing Laboratory 3
CH-1015 Lausanne, Switzerland.

ABSTRACT

This paper describes a motion estimation co-processor
architecture that explicitly separates the implementation
stages consisting of data access to the search window and
the evaluation of the matching criterion from the
implementation of the search strategy. The architecture is
modular and can be re-configured according to the
different MPEG video coding profiles and level
parameters. Although the architectural solutions
described here can be in principle applied to any SoC
implementation technologies, the solution presented here
is expressly conceived and validated on FPGA co-
processing architectures supporting mixed SW/HW
implementations of video encoders such as generic PC
platforms with a standard PCMCIA FPGA cards. The
module has been developed in the framework of the
MPEG reference hardware description activity.

INTRODUCTION

The motion estimation is well known to be the most
computation-intensive stage of video coding process and
has been the subject of many research works (on both
algorithmic and architecture sides) which aim to reduce
the implementation complexity. For brevity we cannot
here provide an accurate review of the wide literature on
the subject, we suggest referring for instance to [1] [2]
and their references, for an updated review of the state of
the art, but we just remind the main families of
approaches developed so far. Although some algorithmic
and architectural solutions can include different elements
from different families of approaches, and thus a clear
distinction between algorithms belonging to different
categories is practically impossible, nevertheless we can
roughly partition them into four main families. The first
family is the so called “Reduced Search Algorithms”
which aim to reduce the complexity by limiting the
measure of the matching criterion to only a (small) subset

of candidate vectors in the search window. The key
element here is the “intelligence” of the search algorithm
that may completely change depending on the
requirements of the video coding application (portable
video telephony, HDTV for sport events, etc…). A
second family is constituted by the approaches in which
the complexity reduction is achieved by using multi-
resolution searches on sub-sampled image search
windows. A third approach is to use simplified matching
criteria at the place of the classical Maximun Absolute
Difference (MAD) criterion. A fourth family of
approaches is based on various pre-processing stages that
reduce the images to binary images for which simple
XOR operations are used for the evaluation of the MAD.
For most of the algorithms, using one or more elements
from the different families sketched above, dedicated
optimized implementations using systolic arrays and/or
specific data flows handlings are needed to achieve
effective performances as well as relevant complexity
reductions. While a lot of effort has been devoted to
developing such reduced complexity “solutions” (search
algorithm + data flow implementation), much less effort
has been devoted to study how to be able to scale the
“solutions” versus the different parameters such as the
size of the search window, the available memory
bandwidth (that usually is a off-chip memory) and the
processing power. Most of the “solutions” requires a
close coupling between data flow handling and the
dedicated hardware. Nowadays, with the appearance of
powerful processors with specialized instruction sets and
new families of FPGAs with embedded arithmetic for
which the MAD evaluation is not anymore a difficult
burden, some of the reduced complexity “solutions”
presented in the past have lost their interest. Modularity,
flexibility to cover the different coding applications and
the possibility of upgrading using the more recent results
and improvements are getting more and more importance.
Moreover, for two other motivations the development of
programmable motion estimation block becomes
extremely interesting. One is the recent appearance of

0-7803-9134-9/05/$20.00 ©2005 IEEE

PCMCIA FPGA cards that can be plugged on standard
PC supporting high performance HW co-processing that
can be linked to generically optimized SW codecs
running on PC or on other DSP platforms [3] [4]. The
second is the development of mixed SW/HW standard
descriptions of ISO MPEG video codecs [5] [6] [7] that
directly provides as starting point for the designer a
choice between different SW and HW assisted
partitioning including HDL or System C source code of
the HW modules.

For such reasons in this work we focus on
architectures that present a wide degree of flexibility and
modularity of the different elements versus the various
performance and implementation parameters of motion
estimation so as to be able to cover different applications
ranging from high quality HDTV up to mobile video. The
family of approaches supported is the reduced search
algorithms on a specific search window. The recent
results including the comparison with other approaches
has shown that using appropriate (for the video
application) reduced search algorithms is possible to
achieve optimal coding results [1]. The main idea of the
architecture so as to achieve the desired level of
flexibility and re-programmability for the search is thus to
separate the data access and the matching criterion
implementation stages from the intelligence of the
algorithmic search. Therefore, the co-processor
architecture, depending on the support platform and
matching criterion used, can be programmed freely by the
user programming at high level his preferred “intelligent”
search exploiting the resource budget in terms of
available “candidate” vectors for each search. This
architecture has been designed for recent FPGAs families
which provide the usual embedded gates and local
memory storage as well as one or more embedded
arithmetic processors that can be freely programmed by
the final user.

The implementation objective of the architecture is not
only an efficient hardware implementation to speed up
matching operations, but also to provide the possibility of
randomly matching any area in a search window without
any other limitation on the access sequence. The random-
block access in the search window is obtained with a
specific data flow architecture and address generation
strategy. Address-generation is processed by a flexible
unit (FPGA-embedded DMA or processor) to enable the
translation of the user search strategy into the hardware
set-up.

The flexibility of the hardware accelerator supports all
the different motion estimation modes which appear in
the recent extension of the MPEG video standard family
such as AVC. The search-window size is parametric so
that it can be configured according to the search window
size of the profile under consideration or reduced
according to the desired application.

2. A MODULAR PROGRAMMABLE CO-

PROCESSOR ARCHITECTURE FOR REDUCED
SEARCH MOTION ESTIMATION

The major challenge of the architecture design of the

co-processor is to allow the setting of the size of the
image pattern (i.e. macroblock, block or quarter of a
block) the size of the search-window, the random access
to guarantee any search strategy to be user defined,
providing sufficient processing resources for the different
standard versions and profiles. So as to guarantee the
random access in any position of a search window the
search window pixels have to be accessible to the
matching engine and need to be stored in the FPGA to
reduce the number of access to the external memory, so
as not to exceed the available bandwidth. The theoretical
minimization of the bandwidth would cost an internal
storage size equivalent to the width of the image in pixels
multiplied by the height of the search window. Such
solution it is too demanding in terms of internal storage
and a better trade-off is to accept an increase of the
external accesses bandwidth (which is indeed available
on current state of the art SDRAM and ZBT chips) of a
factor given by the ratio between the search window
height and the macroblock size.

Thus the co-processor is constituted of the internal
buffer, the external memory controller and the MAD
estimation core. The external memory controller is in
charge of the downloading of a pattern and the associated
search window into the internal buffer memory. Into the
motion estimation core, three elements are in charge of
the internal memory interface in the MAD estimation
core:

 one element controls the input throughput
provided by the external memory,

 a second element provide two rows (one from the
pattern one from the search window) to the MAD
estimation element,

 a third element is in charge to store temporarily
the results before the transfer into the external
memory.

So as to provide the required search random access, the
address-generation block needs to be flexible. The design
has been implemented using DMA and a processor
mapped on the FPGA logic. Such block could also be
implemented using an embedded processor available in
some of the FPGAs families. The control block
synchronizes of the system and control commands and
relative hand-shaking. The figure 1 reports the main
elements constituting the architecture of the co-processor.
The data-flow bandwidth is relative to a 16x16 pattern
(one macroblock vector estimation).

Input-data
memory

128

Control block

ZBT
SRAM

32

MAD
estimation

Block

Motion extimation Core

Controls

128

Results
Memory

32

Input interface
controller for

input-data memory

Ouput interface
controller for

input-data memory

Interface
controller for

results memory

External
memory

controller

Figure 1. Motion estimation core for 16x16 pattern size.

The MAD matching evaluation criterion has been used in
the current version of the implementation, other criterion
could be implemented in future version of the
architecture. The implemented pipelined architecture
enables to match a block and a portion of search window,
row by row. At each cycle, the two internal memories
permits to access at two rows, one extract form the block
and the corresponding one in the search window. An
input data memory (Figure 2) and the associated control
have been designed in order to provide the row of 16
pixels (128 bits) at each cycle. The internal search
window memory has been implemented on the FPGA
internal memory (Virtex-II BRAMs).

Pattern
memory 32 128

128

32

DATA_IN 4x4
transposition

matrix

128

Pr
oc

es
s (

M
A

D
)

Search
window
memory

Programmable

Shift 320

Results
memory

32

Flip-Flops

DATA_OUT

Input data memory

CLK_IN

CLK_OUT

Figure 2. Data flow in the motion estimation co-

processor.

An address allows selecting one column into the

search window and one into the block, the programmable
shift to select 128 bits into the search window column
according to the selected matching. The address and shift
control are both generated by the control blocks.

At the initialisation it is possible to reconfigure pattern
and search window sizes. Currently, the architecture has
been validated for any pattern size between 8x8 and
16x16. The extension to smaller pattern sizes such as 4x4
as specified by the recent AVC standard is on-going.
Obviously the size of patterns can only be configured at
the system initialization. Any search-window width
between 20 and 256, can be set according to the available
processing. Rectangular search windows, wider in the
horizontal dimension have been shown to be very
efficient for most of the video applications. Considering
the internal architecture of Virtex-II memory blocks
(BRAMs) depth, an optional element in charge of the
image transposition can be inserted into the data flow

whenever the search window height is lower than its
width. Such component yields a reduction of the number
of Virtex-II memory block (BRAMs) usage. A data
transposition example on a 56x40 search window
example is reported on Figure 3.

 The pixels are coded on a byte on most of the video
profiles, so as to improve the system bandwidth
efficiency, the external memory has been mapped with
32-bits bus width.

56 pixels= 14 words of 32 bits.

…Blocs RAM

14 x 32 bits to 448 bits

Bloc Shift
out

16 pixels

16 pixels

Depth storage:
10 words

10 Blocs RAM

10 x 32 bits to 128 bits

16 pixels

…

40 pixels x
56 pixels

(a) (b)

Figure 3. Search window transposition for the efficient

usage of Virtex II BRAMs.

The resulting architecture allows to access in one

clock cycle any search window column and consecutive
pattern matching evaluations do not need to be adjacent
in terms of memory locations. The implementation of the
component, in charge of the address generation, is quite
complex. Two implementations of this component have
been investigated: the first is based on a custom DMA
described in VHDL language, the second is based on
microcode running on a processor (MicroBlaze) mapped
on the FPGA. A powerPC based implementation (for The
Virtex-Pro and equivalent other families of FPGAs) has
also been considered and is currently in development.

3. EXAMPLE OF ACHIEVEABLE
PERFORMANCES

All the results reported in this section are obtained for

the implementation setting on a search window with a
size of 56x40 and a 16x16 blocks (Figure 3.). The ZBT
SRAM has 32 bits bus width, and is used with a 100 MHz
frequency clock. In the diagram of picture 4, each couple,
formed by a 16x16 block pattern and the associated
pattern from the desired search window position, is
marked with the same number. Input data can be pre-
fetched, constituting the next pattern and search window
position, simultaneously with the current matching
evaluation process.

For a search with a 16x16 pattern and a 56x40 search
window, 1025 matching can be processed in 202,5 µs on
a VirtetexII FPGAs. Since the transfer time for a 16x16
block and a 56x40 image is 5 µs and the result transfer
time of only 2 µs, for a full-search strategy, idle times on
data bus represent 96 % of time, which enables to use the
ZBT memory by others processing. Therefore, a random
access to the search window size can be achieved without
throughput limitation, thus enabling “Reduced Search
Algorithms” on large search windows.

1
Data input

1 Process 2

2 3

Data output 1 2

Transfer time for
a 16x16 image & a 56x40 image

4,7 µs
Processing time for

a 16x16 image & a 40x20 image

202, 5 µs

1,3 µs

Transfer time for
a 16x16 correction image & a vector

Figure 4. Processing diagram.

Table 1 reports the resource usage of the example above.
As can be easily seen the FPGAs presents a large portion
of unused resources that can be allocated to other co-
processing tasks of the mixed SW/HW codec.

 Device utilization summary:

 Selected Device : 2v3000fg676-4
 Number of Slices: 2559 out of 14336 18%
 Slices FlipFlop… 2225 out of 28672 8%
 Number

of 4 input LUTs: 2084 out of 28672 7%
 Number of BRAMs: 14 out of 96 14%
 Multiplier 3 out of 20 2,5%

Table 1. Summary of resource utilization of the
VirtexII FPGA

Using the MicroBlaze based controller for address

generation, the proposed implementation uses only 18%
of all available slices in the VirtexTM-II XC2V3000-4
FPGA. The current investigations on PowerPC on Virtex-
II or Virtex-IV aim to enable us to use complex “Reduced
Search Algorithms” and then reduce the number of
matching. For instance allocating 125 matching per block
to the user programmable “Reduced Search Algorithm”
(process requiring 24.69 us), it can enable the process of
40500 blocks/s, that means a CCIR 720x576 resolution
image can be processed in real-time (25 frames/s).

4. CONCLUSION

A fully configurable motion estimation block that
explicitly separate data flow handling and search strategy
has been designed. It can support any “Reduced Search
Algorithm” programmable by the user using simple
programming language. The user can fully configure the
search window and the search strategy in accordance to
the specific profile and level. The architecture has been
demonstrated on a FPGA family and is compatible with
the concept and APIs [5] [6] developed in the MPEG
reference HW description activity. Further improvements
of the performances (i.e. number of MAD evaluation for
a given configuration) are possible duplicating the HW
dedicated to the MAD evaluations without exceeding the
data flow capabilities but at the expenses of a higher
usage of FPGAs resources. Another evolution under
study is to extend the architecture concept so that it can
process in three parallel stages 16x16, 8x8 and 4x4
patterns as required by the recent AVC standard, as well
as introducing a half and quarter pixel refinements stage.

[1] M. Mattavelli, G. Zoia: "Vector tracing algorithms for
motion estimation in large search windows", IEEE Trans. on
Circuits and Systems for Video Technology, December 2000,
Vol 10, Nr. 8, pp 1426-1437.

[2] J-H Luo, C-N Wang, T. Chiang: “A novel all binary motion
estimation (ABME) with optimized hardware architecture”,
IEEE Trans. on Circuits and Systems for Video Technology,
August 2002, Vol 12, Nr. 8, pp 700-712.

[3]Wildcard II data sheet available at:
http://www.annapmicro.com/wildcard2.html.

[4] T. Mohamed, et al, “A Rapid Prototyping Framework for
MPEG/H.264-enabled Consumer Products”, ICCE 2005, Las
Vegas, Nevada, USA, January 2005.

[5] P. Schumacher, R. Turney, and M. Mattavelli, “Information
Technology – Coding of Audio Visual Objects – Part 9:
Reference Hardware Description,” ISO/IEC
JTC1/SC29/WG11/N6091, Hawaii, USA, 8-12 December 2003.

[6] P. Schumacher and R. Turney, “Integrated Framework for
MPEG-4 Part 7, Part 9, Part 10,” ISO/IEC JTC1/SC29/WG11
N6092, Hawaii, USA, 8-12 December 2003.

[7] ISO/IEC SC29WG11: “Updated Call for the Submission of
Hardware Reference Code for MPEG-4 Part 9: Reference
Hardware Description”, document N6506, Redmond,
Washington, July 2004.

