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ABSTRACT

As image collections become ever larger, effective access
to their content requires a meaningful categorization of the
images. Such a categorization can rely on clustering meth-
ods working on image features, but should greatly bene-
fit from any form of supervision the user can provide, re-
lated to the visual content.Semi-supervised clustering—
learning from both labelled and unlabelled data— has con-
sequently become a topic of significant interest. In this pa-
per we present a new semi-supervised clustering algorithm,
Pairwise-Constrained Competitive Agglomeration, which is
based on a fuzzy cost function that takespairwise constraints
into account.

1. INTRODUCTION

Clustering methods that attempt to organize image collec-
tions for efficient content access can be grouped into two
main categories: partitional or hierarchical. Partitional al-
gorithms are based on the optimization of specific objective
functions and a widely used algorithm is Fuzzy C-Means
(FCM)[2], a prototype-based clustering algorithm that has
been constantly improved for twenty years, by the use of the
Mahalanobis distance [6], the adjunction of a noise cluster
[4] or the use of competitive agglomeration [5], [3].

Unfortunately, such algorithms do not take specific user-
provided information into account and the resulting image
categories often do not reflect user expectations. As a con-
sequence,semi-supervised clustering—letting the user pro-
vide a limited form of supervision— has recently become a
topic of significant interest. More specifically, to help unsu-
pervised clustering, a small amount of information reard-
ing e.g. pairwise constraintsbetween data items can be
used; the constraints simply specify whether two data items
should be in the same cluster or not. Even when a user has
little or no prior knowledge of the database (ignores what
the classes may be, ignores their number), she can easily
provide such pairwise constraints.

The few existing semi-supervised clustering algorithms,
such as Pairwise Constrained K-means (PCKmeans) [1], rely
on parameters that are difficult to set (e.g. the number of
clusters) and require a high number of constraints to reach
good results. The new semi-supervised clustering algorithm
we propose here, Pairwise Constrained Competitive Agglom-
eration (PCCA), provides significant improvements in these
directions.

2. COMPETITIVE AGGLOMERATION: A SHORT
REMINDER

Competitive Agglomeration (CA) [5] is a fuzzy partitional
algorithm that does not require the user to specify the de-
sired number of clusters. LetX = {xi| i ∈ {1, .., N}} be
a set ofN vectors,V = {µk| k ∈ {1, .., C}} the set of pro-
totypes of theC clusters andU the degrees of membership
of the vectors to the clusters. CA minimizes the following
objective function:

J (V, U) =
C∑

k=1

N∑

i=1

(uik)2d2(xi, µk)−β(k)
C∑

k=1

[ N∑

i=1

(uik)
]2

(1)
with the constraint

C∑

k=1

uik = 1, for i ∈ {1, .., N} (2)

In (1), d(xi, µk) is the distance between the vectorxi

and the cluster prototypeµk anduik is the membership of
xi to a clusterk. The first term is the standard FCM ob-
jective function [2]. The second term progressively reduces
the number of clusters.



3. PAIRWISE CONSTRAINED COMPETITIVE
AGGLOMERATION

3.1. Principle of the Method

The objective function to be minimized should combine the
feature-based similarity between data points and the pair-
wise constraints available. LetM be the set of must-link
pairs such that(xi,xj) ∈ M impliesxi andxj should be
assigned to the same cluster, andC be the set of cannot-link
pairs such that(xi,xj) ∈ C implies xi andxj should be
assigned to different clusters. Using the same notations as
for CA, the objective function PCCA must minimize is:

J (V, U) =
C∑

k=1

N∑

i=1

(uik)2d2(xi, µk) (3)

+ α
( ∑

(xi,xj)∈M

C∑

k=1

C∑

l=1,l 6=k

uikujl

+
∑

(xi,xj)∈C

C∑

k=1

uikujk

)
− β

C∑

k=1

[ N∑

i=1

(uik)
]2

with the same constraint (2).
The prototypes of the clusters (k ∈ {1, .., C}) are

µk =
∑N

i=1(uik)2xi∑N
i=1(uik)2

(4)

and cardinalities are computed asNs =
∑N

i=1 uis.
The first term in (3) is the sum of squared distances to

the prototypes weighted by constrained memberships (Fuzzy
C-Means objective function). This term reinforces the com-
pactness of the clusters.

The second term is composed of the cost of not respect-
ing the pairwisemust-linkconstraints and the cost of not re-
specting the pairwisecannot-linkconstraints. The penalty
corresponding to the presence of two such points in differ-
ent clusters (for must-link constraints) or in the same cluster
(for cannot-link constraints) is weighted by their member-
ship values. This second term is weighted byα, which is a
way to specify the relative importance of the supervision.

The third component is the sum of the squares of the car-
dinalities of the clusters (Competitive Agglomeration) and
controls the number of clusters.

When the terms are combined, the final partition will
minimize the sum of intra-cluster distances, while partition-
ing the data set into the smallest number of clusters such that
a maximum number of specified constraints are respected.
When the membership degrees are crisp and the number of
clusters is pre-defined, this cost function reduces to the one
used by PCKmeans [1]. It can be shown that the equation
for updating memberships is

urs = uFCM
rs + uConstraints

rs + uBias
rs (5)

where

uFCM
rs =

1
d2(xr,µs)∑C

k=1
1

d2(xr,µk)

(6)

uConstraints
rs =

α

2d2(xr, µs)
(Cvr

− Cvs
) (7)

uBias
rs =

β

d2(xr, µs)
(Ns −Nr) (8)

In (7), Cvs
andCvr

are defined as

Cvs =
∑

(xt,xj)∈M

C∑

l=1,l 6=s

ujl +
∑

(xt,xj)∈C
ujs (9)

Cvr
=

∑C
k=1

�P
(xr,xj)∈M

PC
l=1,l6=k ujl+

P
(xr,xj)∈C ujk

�

d2(xr,µk)∑C
k=1

1
d2(xr,µk)

The first term in equation (5) is the membership term in
the FCM algorithm and considers only distances between
vectors and prototypes. The second term takes into account
the available supervision: memberships are reinforced or
deprecated according to the pairwise constraints defined by
the user. The third term leads to a reduction of the cardinal-
ity of spurious clusters, which are discarded if their cardi-
nality drops below a threshold.

Theβ factor should provide a balance between the terms
of (3), soβ is defined at iterationt by:

β(t) =
η0 exp(−t/τ)

∑C
j=1

[ ∑N
i=1(uij)

]2

[ C∑

j=1

N∑

i=1

(uij)2d2(xi, µj)

+ α
( ∑

(xi,xj)∈M

C∑

k=1

C∑

l=1,l 6=k

uikujl

+
∑

(xi,xj)∈C

C∑

k=1

uikujk

)]
(10)

The exponential factor makes the last term dominant in
the beginning to reduce the number of clusters, then the first
3 terms will dominate, to seek the best partition of the data.

3.2. Merging Process

As the algorithm proceeds, the clusters whose cardinalities
drop below a threshold are discarded. The choice of this
threshold is important since it reflects the size of the final
clusters. With respect to the way basic CA (see [5]) discards
spurious clusters, two difficulties arise:



Fig. 1. Each line is a sample of one of the 4 classes of the
generalist database

• The threshold has to be changed manually by the user
according to the data he wants to categorize. So clus-
tering would become sensitive to a new parameter,
when one important goal of PCCA is to easily find an
appropriate number of clusters.

• Good clusters may have different cardinalities, so a
criterion based only on their minimal cardinality is
not effective. If the minimal cardinality is too small,
several prototypes can co-exist for a large cluster.

We suggest a strategy for improving the agglomeration process
in CA. First, we fix the minimum cardinality threshold ac-
cording to the number of points in the dataset, such as all the
small clusters can be retrieved, obtaining a weak agglomer-
ation. Then, we build new prototypes based on pairwise
merging. The proposed procedure reduces the number of
prototypes by merging the best pair of prototypes among all
possible pairs. This process is repeated until no more merg-
ing is possible. Since we aim to reduce the sensitivity of
clustering to parameters, all the results presented here were
obtained with a fixed proximity threshold of 0.01.

4. EXPERIMENTAL RESULTS

To evaluate our PCCA algorithm and to compare it to the ba-
sic CA algorithm and to PCKmeans, we selected two differ-
ent ground truthimage databases: a generalist one, having a
few large classes and a scientific one, having several classes
of very different sizes. The use of two databases with differ-
ent characteristics should allow us to obtain more significant
comparisons and eventually demonstrate the robustness of
PCCA. The first image database contains 4 classes of 100
images each; a sample of images is shown in Figure 1. The
classes are rather diverse and many images belonging to
different classes are quite similar. The second database is
composed of images of different phenotypes ofArabidopsis

22 plants 28 plants 44 plants 13 plants

18 plants 32 plants 20 plants 10 plants

Fig. 2. A sample of theArabidopsisimage database, with
the number of plants in each class

thaliana (corresponding to slightly different genotypes); a
sample of the images is shown in Figure 2. There are 8 cat-
egories, defined by visual criteria and described below, for
a total of 187 plant images, but different categories contain
very different numbers of instances. The intra-class diver-
sity is also rather high. The clusters we attempted to find in
our study correspond to: textured plants, plants with long
stems and round leaves, plants with long stems and fine
leaves, plants with dense, round leaves, plants with desic-
cated or yellow leaves, plants with large green leaves, plants
with reddish leaves, plants with partially white leaves. In
both experiments, pairs of images are randomly selected
and the (emulated) user is required to provide the corre-
sponding constraints.

PCCA algorithm outline

• Fix the maximum number of clustersC.

• Randomly initialize prototypes forj ∈ {1, . . . , C}.

• Initialize memberships: equal membership of every
feature point to every cluster.

• Compute initial cardinalities forj ∈ {1, . . . , C}.

• Repeat

– Computeβ using equation (10).

– Compute membershipsuij using equation (5).

– Compute cardinalitiesNj for j ∈ {1, . . . , C}.
– Forj ∈ {1, . . . , C}, if Nj < threshold then dis-

card clusterj.

– Update number of clustersC.

– Update the prototypes using equation (4).

• Until prototypes stabilize.
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Fig. 3. Results on the groundtruth image database
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Fig. 4. Results on theArabidopsisdatabase

The image features we used are the Laplacian weighted
histogram, the probability weighted histogram, the Hough
histogram, the Fourier histogram and a classical color his-
togram obtained in HSV color space. The joint feature vec-
tor has more than 600 dimensions, which can make cluster-
ing impractical. We used linear principal component analy-
sis To reduce the dimension of the feature vectors; after a 5-
fold reduction, we remain within a 5% overall loss of quality
in the precision/recall diagrams of query by example. Since
the shape of the clusters is usually not spherical, we use the
Mahalanobis rather than the Euclidean distance.

Figures 3 and 4 present the dependence between the per-
centage of well-categorized data points and the number of
pairwise constraints considered, for each of the two datat-
sets. The graph for the basic CA algorithm (ignoring the
constraints) is given as a reference. We can first notice
that, by providing simple semantic information in the form
of pairwise constraints, the user can significantly improve
the quality of the categories obtained. The number of con-

straints required for reaching such an improvement is rela-
tively low with respect to the number of items in the dataset.

Also, with a similar number of constraints, PCCA per-
forms significantly better than PCKmeans by making a bet-
ter use of the available constraints; the signed constraint
terms in (10), part of the fuzzy memberships, directly in-
clude the pairwise constraints in the fuzzy clustering process.

5. CONCLUSION

We have shown that, by providing a limited amount of sim-
ple knowledge in the form of pairwise constraints, the user
can bring the automatic categorization of the images in a
database much closer to her expectations. We put forward
a new semi-supervised clustering algorithm, PCCA, based
on a fuzzy cost function that takes pairwise constrains into
account.

Experiments on a generalist image database and on the
Arabidopsisdatabase show that PCCA performs consider-
ably better than unsupervised clustering and than PCKMeans.
By making better use of the constraints, PCCA allows the
number of constraints to remain sufficiently low for this ap-
proach to be interesting for the users. The computational
complexity of PCCA is linear in the number of data vectors,
making this algorithm suitable for real-world clustering ap-
plications.
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