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ABSTRACT

The ability to automatically detect visually interesting regions
in images has practical applications in the design of activema-
chine vision systems. Analysis of the statistics of image fea-
tures at observers gaze can provide insights into the mecha-
nisms of fixation selection in humans. Using a novel foveated
analysis framework, in which features were analyzed at the
spatial resolution at which they were perceived, we studied
the statistics of four low-level local image features: lumi-
nance, contrast, center-surround outputs of luminance andcon-
trast, and discovered that the image patches around human
fixations had, on average, higher values of each of these fea-
tures than the image patches selected at random. Center-
surround contrast showed the greatest difference between hu-
man and random fixations, followed by contrast, center-surro-
und luminance, and luminance. Using these measurements,
we present a new algorithm that selects image regions as likely
candidates for fixation. These regions are shown to correlate
well with fixations recorded from observers.

Index Terms— Visual system, Active vision

1. INTRODUCTION

Despite a large field of view, the human visual system (HVS)
processes only a tiny central region (the fovea) with great de-
tail while the resolution drops rapidly towards the periphery.
To assimilate visual information and build a detailed repre-
sentation from this multi-resolution visual input, the HVS
uses a dynamic process of actively scanning the visual en-
vironment using steady fixations linked by rapid, ballisticeye
movements called saccades. Such afoveated visual percep-
tion provides for a large field of view without the accompany-
ing data glut and has excellent potential for use with artificial
vision systems.

While the degradation of spatial resolution in the retina
has been modeled accurately by measuring the contrast thresh-
olds of transient stimuli [1], the fundamental question in the
area of foveated, active artificial vision of ‘How do we de-
cide where to point the cameras next?’ has not been thor-
oughly understood. An understanding of how the HVS se-
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lects and sequences image regions for scrutiny is not only im-
portant to better understand biological vision, it is also the
fundamental component of any foveated, active artificial vi-
sion system. The interplay of top-down (high-level/ cogni-
tive) mechanisms such as image understanding and bottom-
up (low-level/ pre-cognitive) image features (such as edges,
contrast and motion) influence eye movements in so many
intricate ways that it makes the problem of modeling gaze
a formidable task. Since mechanisms that require relatively
little image interpretation are likely to be most relevant for
current work in artificial vision and automatic visual search,
the goal of this paper is to investigate bottom-up, image-based
mechanisms that guide eye fixations.

Bottom-up approaches to gaze selection assume that eye
movements are quasi-random and driven by low-level image
features. They propose a computational model for human
gaze selection based on image processing to accentuate cer-
tain image features that are deemed relevant for drawing gaze.
In an interesting study, Privitera & Stark [2] used a suite ofal-
gorithms such as detecting symmetry, center-surround regions
in images that resemble receptive field profiles, wavelets, con-
trast, and edges-per-unit-area to select points of interest in an
image and found that43% − 54% of their fixation selections
overlapped with actual human eye fixations. In another neuro-
biologically inspired model [3], an image is first decomposed
into its intensity, color, and orientation channels. Each feature
is then represented by Gaussian pyramids which are used to
compute center-surround responses to enhance features that
differ from their neighbors. These maps are normalized and
combined across scales and features to result in conspicu-
ity maps, whose peaks indentify visually interesting regions.
Several modifications that include motion parameters, novel
combinations of the feature maps, and modulation by high-
level contextual priors have also been developed.

With the availability of inexpensive, accurate eye track-
ers, a recent trend in the bottom-up approach to understand-
ing gaze has been to quantify the differences in the statistics
of image patches at thepoint of gaze of observers and those
selected at random. Reinagelet al. [4] show that human fix-
ation regions have higher spatial contrast and spatial entropy
than randomly fixated regions, indicating that the human eye
may be trying to select image regions that maximize the infor-
mation content transmitted to the visual cortex. Other studies



have corroborated these findings [5].
While the gaze-contingent approaches have provided in-

sight into the visual features that are useful for understand-
ing and hence modeling gaze, the ensemble of image patches
at observer’s fixations have always been analyzed at maxi-
mum resolution (of the stimulus). A moment of introspec-
tion suggests that, analysis of fixation attractorsmust involve
a foveated framework, where low-level image features that
attract subsequent fixations are derived solely based on the
information obtained by the visual system from its periphery
(whose resolution varies across the visual field).

In this paper, we sought insight into the influence of four
local image features: luminance, contrast, and center-surround
outputs of luminance and contrast in the selection of image
regions by the HVS. In particular, we recorded the eye move-
ments of29 observers as they viewed101 calibrated natu-
ral images, and attempted to quantify the differences in the
statistics of these features at observers’ fixations and fixations
selected at random. In contrast to previous work, a foveated
framework was used to analyze the statistics of image patches
at the spatial resolution at which the patch was perceived by
the HVS. A simple algorithm that selects image regions as
likely candidates for fixation based upon a linear combination
of these features is presented.

2. EXPERIMENTAL METHODS

2.1. Stimuli and Tasks

101 simages (1024 × 768 pixels) containing natural habitats
of trees, grass, and water (Fig. 1) were selected from the van
Hateren database of calibrated grayscale images. The stimuli
were displayed on a21-inch, gamma corrected monitor at a
distance of134cm from the observer. The screen resolution
corresponded to about1 arc minute per pixel. Each image
was displayed for5 seconds in a fixed order for all observers.

Observers were instructed to free view each of the images
as they desired. All observers commenced viewing the image
stimuli from the center of the screen. To encourage observers
to scan the entire scene, following the display of each image,
observers were shown a small image patch and asked to in-
dicate whether the image patch was from the image they just
viewed or not. A total of 29 (24 naı̈ve) adult human volun-
teers with normal or corrected-to-normal vision participated
in this study.

2.2. Eye Tracking

Human eye movements were recorded using an SRI Gener-
ation V Dual Purkinje eye tracker. It has an accuracy of
< 10 arc minute, and a precision of∼ 1 arc minute. A
bite bar and forehead rest was used to restrict the observer’s
head movements. The observer was first positioned in the
eye tracker and a positive lock established onto the observer’s
eye. A linear interpolation on a3×3 calibration grid was then

done to establish the linear transformation between the output
voltages of the eye tracker and the position of the observer’s
gaze on the computer display. The output of the eye tracker
(horizontal and vertical eye position signals) was sampledat
200Hz and stored for offline data analysis. This calibration
routine was repeated compulsorily every 10 images, and a cal-
ibration test run after every image.

2.3. Image Data Acquisition

The gaze coordinates corresponding to the eye movements of
the observers for each trial were divided into fixations and
saccades using spatio-temporal criteria derived from the known
dynamic properties of human saccadic eye movements. As
mentioned earlier, we propose a foveated framework to an-
alyze the statistics of low-level features of image patchesat
the resolution at which they were perceived by the observer.
To achieve this, the image was first foveated at the observer’s
current fixation and a patch centered at the ‘next’ fixation was
extracted for analysis. We extracted circular patches of diam-
eter96 pixels (1.6◦). We have also tested our simulations for
other patch diameters ranging from32 to 192 pixels.

3. COMPUTING IMAGE FEATURES

3.1. Luminance Computation

The mean luminance for an image patch was computed us-
ing a circular raised cosine weighting function,w : Ī =
(1/

∑M

i=1 wi)
∑M

i=1 Iiwi where,M is the number of pixels
in the patch,Ii is the grayscale value of pixel at locationi.
The weighting functionwi = 0.5 ∗ (cos(πri

R
) + 1), whereR

was the patch radius andri, the radial distance of pixeli from
the patch center.

3.2. RMS Contrast Computation

For an image patch, a weighted root-mean-squared (RMS)
contrast using a circular raised cosine weighting function, w,

was computed:C =
√

(1/
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i=1 wi)
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(Ī)2
.

3.3. Center-Surround of Luminance

The next image feature that we investigated was the output
of center-surround filters operating on the patch luminance.
Attention often seems to be drawn to regions that differ from
their surroundings in some aspect. Such regions can be de-
tected by the outputs of center-surround or, alternatively, Ga-
bor kernels. Given an image patch,I(·), and a Gabor ker-
nel, Gab(·) we computedG = max |Gab(·) ∗ I(·)|, where
∗ corresponds to the convolution operator. Of the many Ga-
bor kernels that can be used to filter an image patch, we used
the kernel which best modeled (in a least squares sense) the
spatial frequencies where the human patches differed signifi-
cantly from the random patches.



3.4. Center-Surround of Contrast

Finally, center-surround differences of local image contrast
(i.e. contrast of contrast) was used to capture some higher or-
der image structure that is ignored by the luminance Gabors.
For example, regions whose central and surrounding regions
have the same mean luminance, but different contrast profiles
can be captured by this feature. Since we are now interested
in the spatial frequency distribution of local image contrast,
we used the magnitude of the local image gradient for each
pixel as a measure of an extremely local (pixel-level) mea-
sure of image contrast. The design of the Gabor kernel and
the computation of the filter output proceeds similar to thatin
Section 3.3 with the difference that the input to the analysis
routine is the magnitude of the local image gradient (instead
of the patch luminance).

4. RESULTS

The ensemble of image patches around observers’ fixation
points was then analyzed to determine if the statistics of the
four image features discussed above were statistically dif-
ferent from that of an ensemble of image patches that were
picked randomly. The ensemble of randomly selected patches
was obtained by shuffling the fixations of an observer for a
particular image with that of a different image. Thus this
image shuffled database simulates a random human observer
whose fixations are not influenced by features of the underly-
ing image, but otherwise captures all the statistics of human
eye movements.

A consequence of using a foveated analysis framework
is that the human and the random ensembles contain image
patches that have been blurred to different extents. Thus, there
arises a need to perform an eccentricity-based analysis, where
patches of similar blur are grouped together and the relevant
image feature is analyzed separately for each blur. To perform
the eccentricity-based analysis of our image statistics, each
patch in the database was first associated with the length of the
saccade,e (in degrees), that was executed to get to that partic-
ular patch. The distribution of these saccade magnitudes were
partitioned into5 bins such that each bin contained the same
number of patches (around6000) and the patches in each bin
were analyzed separately.

For each image feature,S, since we were interested in the
differences (and not the absolute values) in the image statis-
tics at observers’ fixation and randomly selected fixations,
we computed the ratio of average patch feature at the ob-
servers’ fixations (S(e, n)pog) to the average patch feature for
image patches from the image shuffled database (S(e, n)rand)
for each image,n, and then averaged this ratio across the
N(= 101) images in the database as follows:S(e)ratio =
1
N

∑N

n=1
S(e,n)pog

S(e,n)rand

. Finally, to evaluate the statistical sig-

nificance of the image statistic under consideration, we used
bootstrapping to obtain the sampling distribution of the mean

statistic of interest.
The value of this ratio,S(e)ratio, for the four image fea-

tures is plotted as a function of saccade magnitude,e, in Fig.
2. The error bars represent a 95% confidence interval from
200 bootstrap resamples. First, we note that for all features,
the mean value ofS(e)ratio is significantly higher than1.0,
which implies that the image patches around human fixations
had, on average, higher values for each of these features than
the image patches selected at randomat all eccentricities.
While our findings for RMS contrast are in agreement with
previously reported results [4, 5], in a related study, we also
discovered that using foveated image patches produces signif-
icantly higher (statistically) contrast ratios than a non-foveated
analysis. Second, by examining the actual values of the ratios,
we found that center-surround contrast showed the greatest
difference between human and random fixations (maximum
ratio of 1.29), followed by contrast (1.12), center-surround
luminance (1.11), and luminance (1.04).

5. SELECTING VISUALLY INTERESTING REGIONS

Our analysis shows that image patches selected by the HVS
have higher luminance, contrast, and stronger center-surround
profiles than randomly selected patches. This section presents
a simple algorithm that uses these visually important image
features to select fixations in a new scene. Given an image,
the algorithm begins by selecting the center of the image as
the first fixation point and creates a foveated image around
this point. The foveated image is then filtered to create a
saliency map for each of the four features discussed earlier.
Saliency maps for luminance and contrast are computed us-
ing a fixed kernel size of96 pixels. Saliency maps for the
center-surround outputs are obtained using five Gabor kernels
(one per saccade bin) obtained using the procedure described
in Section 3.3. The filtering process is space-variant - i.e.the
type of kernel that is used at a certain location in the image
depends on the distance of that location from the current fix-
ation point. The filtered output is interpreted simply as a like-
lihood map in which regions with large values are more likely
to draw a fixation than regions with lower values. The four
feature maps were then linearly combined using a weighted
average where the weights for each of the feature maps were
selected to be proportional to the maximum value of the ra-
tio values from Fig. 2. The algorithm selects the maximum
value from this weighted selection map as the next fixation
point, foveates the image around this point, and repeats this
process. Inhibition of return was incorporated to avoid select-
ing previously selected regions.

Fig. 3 illustrates, qualitatively, the performance of the fix-
ation selection algorithms for two images from Fig. 1 (row 1,
columns 1 and 2). For visualization purposes, the fixations of
29 observers on these images were clustered using a density-
constrained clustering algorithm. The top ten clusters with the
maximum density of fixations are shown as ellipses in Fig.



3. The fixation selection algorithm was used to select a se-
quence of 10 fixations, each of which was represented by a 2D
Gaussian window, illustrated by the bright regions in Fig. 3.
The full width at half-max (FWHM) of the Gaussian roughly
equaled the diameter of the human foveola (about1◦ visual
angle). A good overlap between the ellipse (observers’ true
fixations) and the bright regions in the selection map (points
selected by the algorithm) shows that the fixation selection
algorithm is able to select fixations with reasonable success.
We also used the Kullback-Leibler Distance (KLD) to quan-
tify the distance between the selected and recorded fixations.
First, each algorithmically selected fixation was replacedby
a 2D Gaussian (FWHM =1◦) and each fixation cluster by a
2D Gaussian whose shape was determined by the shape of the
ellipse. The KLD between these two maps was computed and
is shown in Fig. 4 for15 images. The top bar represents the
KLD between randomly generated fixations and the recorded
fixations, and indicates the minimum performance expected
from any fixation selection algorithm. The remaining bars
show the performance of the linearly combined feature maps
and each individual features. All image features perform bet-
ter than a random searcher, with the combined feature map
producing the best correlation to recorded fixations.

In summary, despite their rapidity and sheer volume, fix-
ations of human observers are not deployed randomly. We
found that image regions selected by human fixations tend
to have, on average, higher luminance, contrast, and center-
surround profiles than patches selected at random. The tech-
nique presented here can be extended to analyze the distribu-
tion of higher order features such as orientation,texture,and
structure.
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Fig. 1. Examples of images used for the experiment
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Fig. 2. Plots ofS(e)ratio as a function of saccade magnitude
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Fig. 3. Comparing algorithmically selected fixations (bright
regions) with clusters of human fixations (ellipses) for two
images from Fig. 1 (row 1, columns 1 and 2).
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