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ABSTRACT lects and sequences image regions for scrutiny is not orly im
portant to better understand biological vision, it is alke t

inimages has practical applications in the design of actise fundamental component of any foveated, active artificial vi

chine vision systems. Analysis of the statistics of image fe sion system. The interplay of top-down (high-level/ cogni-

tures at observers gaze can provide insights into the mechg\—'e) mechanisms SUCh. as image understanding and bottom-
nisms of fixation selection in humans. Using a novel foveatedP (low-level/ pre.-cogrlntlve) image features (such as eflge
analysis framework, in which features were analyzed at thgontrast and motlor_1) influence eye movements N SO many
spatial resolution at which they were perceived, we studiefzpmc""t,e ways that |t'makes the problem of mog]elmg gaze
the statistics of four low-level local image features: lumi a formidable task. Since mechanisms that require relgtivel

nance, contrast, center-surround outputs of luminanceamd little image interpretation are likely to be most relevaot f

trast, and discovered that the image patches around humiHrrent work in artificial vision and automatic visual ségrc

fixations had, on average, higher values of each of these fe e goal .Of this Paper Is to mvgsugate bottom-up, imageetia
tures than the image patches selected at random. Centé?-eChan'smS that guide eye fixations. )

surround contrast showed the greatest difference between h ~ Bottom-up approaches to gaze selection assume that eye
man and random fixations, followed by contrast, centeresurr movements are quasi-random and driven by low-level image
und luminance, and luminance. Using these measuremenf§atures. They propose a computational model for human
we present a new algorithm that selects image regions ag likeda2€ selection based on image processing to accentuate cer-
candidates for fixation. These regions are shown to coerelaf@in image features that are deemed relevant for drawing. gaz

The ability to automatically detect visually interestirgions

well with fixations recorded from observers. In an interesting study, Privitera & Stark [2] used a suitalef
i ) . gorithms such as detecting symmetry, center-surroundmsgi
Index Terms— Visual system, Active vision inimages that resemble receptive field profiles, wavelets, ¢
trast, and edges-per-unit-area to select points of irteres
1. INTRODUCTION image and found that3% — 54% of their fixation selections

overlapped with actual human eye fixations. In another nreuro

Despite a large field of view, the human visual system (HVShiologically inspired model [3], an image is first decompse
processes only a tiny central region (the fovea) with great d into its intensity, color, and orientation channels. Eattdire
tail while the resolution drops rapidly towards the perighe s then represented by Gaussian pyramids which are used to
To assimilate visual information and build a detailed repre compute center-surround responses to enhance featutes tha
sentation from this multi-resolution visual input, the HVS differ from their neighbors. These maps are normalized and
uses a dynamic process of actively scanning the visual eombined across scales and features to result in conspicu-
vironment using steady fixations linked by rapid, balli®y@ ity maps, whose peaks indentify visually interesting regio
movements called saccades. Sudoweated visual percep-  Several modifications that include motion parameters, Inove
tion provides for a large field of view without the accompany-combinations of the feature maps, and modulation by high-
ing data glut and has excellent potential for use with ardfic |evel contextual priors have also been developed.
vision systems. With the availability of inexpensive, accurate eye track-

While the degradation of spatial resolution in the retinagg 5 recent trend in the bottom-up approach to understand-
has been modeled accurately by measuring the contrasihthre]sng gaze has been to quantify the differences in the staisti
olds of transient stimuli [1], the fundamental questionhie t ¢ image patches at thaint of gaze of observers and those
area of foveated, active artificial vision of ‘How do we de- ggjected at random. Reinagelal. [4] show that human fix-
cide where to point the cameras next?’ has not been thoktion regions have higher spatial contrast and spatiabestr
oughly understood. An understanding of how the HVS sethan randomly fixated regions, indicating that the human eye

This research was supported by a grant from the Nationahgeigoun- ~ May be trying to select _image regior_ls that maximize th.e infor
dation (ITR-0427372) and by ECS-0225451. mation content transmitted to the visual cortex. Otheristid




have corroborated these findings [5]. done to establish the linear transformation between theubut
While the gaze-contingent approaches have provided involtages of the eye tracker and the position of the obsexver’

sight into the visual features that are useful for undedstan gaze on the computer display. The output of the eye tracker

ing and hence modeling gaze, the ensemble of image patch@wrizontal and vertical eye position signals) was sampled

at observer’s fixations have always been analyzed at max200H = and stored for offline data analysis. This calibration

mum resolution (of the stimulus). A moment of introspec-routine was repeated compulsorily every 10 images, and a cal

tion suggests that, analysis of fixation attractotst involve  ibration test run after every image.

a foveated framework, where low-level image features that

attract subsequent fixations are derived solely based on the3. |mage Data Acquisition

information obtained by the visual system from its perigher _ )
(whose resolution varies across the visual field). The gaze coordinates corresponding to the eye movements of

local image features: luminance, contrast, and centeosnd ~ Saccades using spatio-temporal criteria derived fromiogvk
outputs of luminance and contrast in the selection of imagéynamic properties of human saccadic eye movements. As
regions by the HVS. In particular, we recorded the eye movetentioned earlier, we propose a foveated framework to an-
ments 0f29 observers as they viewet1 calibrated natu- alyze the statistics of low-level features of image patcites
ral images, and attempted to quantify the differences in thehe resolution at which they were perceived by the observer.
statistics of these features at observers’ fixations antidixa 10 achieve this, the image was first foveated at the obssrver’
selected at random. In contrast to previous work, a foveategurrent fixation and a patch centered at the ‘next’ fixatios wa
framework was used to analyze the statistics of image patch&xtracted for analysis. We extracted circular patchesarheli

at the spatial resolution at which the patch was perceived b§terd6 pixels (1.6°). We have also tested our simulations for
the HVS. A simple algorithm that selects image regions a§ther patch diameters ranging fraiato 192 pixels.

likely candidates for fixation based upon a linear combaorati

of these features is presented. 3. COMPUTING IMAGE FEATURES

2. EXPERIMENTAL METHODS 3.1. Luminance Computation

The mean luminance for an image patch was computed us-
ing a circular raised cosine weighting function, : I =

101 simages 1024 x 768 pixels) containing natural habitats (1/ 31—y wi) 32, Isw; where, M is the number of pixels
of trees, grass, and water (Fig. 1) were selected from the vdf the patch,/; is the grayscale value of pixel at location
Hateren database of calibrated grayscale images. Thelistimd he weighting functionv; = 0.5 « (cos("%*) + 1), whereR
were displayed on al-inch, gamma corrected monitor at a Was the patch radius amg, the radial distance of pixelfrom
distance ofl34cm from the observer. The screen resolutionthe patch center.
corresponded to abodtarc minute per pixel. Each image
was displayed fob seconds in a fixed order for all observers.3.2. RMS Contrast Computation

Observers were instructed to free view each of the image . .
as they desired. All observers commenced viewing the imr?\g’zor an image pat_ch, a We_lghted r_oot-me_an-_squared_(RMS)
stimuli from the center of the screen. To encourage observefONtrast using a circular raised cosine Welghtlnngunctw,n
to scan the entire scene, following the display of each imagéavas computedC' = \/(1/ 2?11 w;) Zf& Wi (L('f_)é) .
observers were shown a small image patch and asked to in-
dicate whether the image patch was from the image they just3. center-Surround of Luminance
viewed or not. A total of 29 (24 rige) adult human volun-
teers with normal or corrected-to-normal vision partitguha The next image feature that we investigated was the output
in this study. of center-surround filters operating on the patch luminance

Attention often seems to be drawn to regions that differ from
their surroundings in some aspect. Such regions can be de-
tected by the outputs of center-surround or, alternativedy
Human eye movements were recorded using an SRI Gendrer kernels. Given an image patch(), and a Gabor ker-
ation V Dual Purkinje eye tracker. It has an accuracy ofnel, Gab(-) we computeds = max|Gab(-) * I(-)|, where

< 10 arc minute, and a precision ef 1 arc minute. A  x corresponds to the convolution operator. Of the many Ga-
bite bar and forehead rest was used to restrict the obsgervebor kernels that can be used to filter an image patch, we used
head movements. The observer was first positioned in thime kernel which best modeled (in a least squares sense) the
eye tracker and a positive lock established onto the obsgrve spatial frequencies where the human patches differedfisigni
eye. Alinear interpolation on&x 3 calibration grid was then cantly from the random patches.

2.1. Stimuli and Tasks

2.2. Eye Tracking



3.4. Center-Surround of Contrast statistic of interest.

Finall t d diff flocal i The value of this ratioS(e) 40, for the four image fea-
inally, center-surround artierences ot focal Image " turesis plotted as a function of saccade magnitadm Fig.

(i.e._contrast of contrast) was used to capture some higher 9. The error bars represent a 95% confidence interval from
der image structu_re that is ignored by the Iumlnange Gabp 500 bootstrap resamples. First, we note that for all feature
For example, regions Whpse central apd surrounding regiong. hean value OB (€)raris is significantly higher thart.0,
have the same mean luminance, but different contrast pmf”%v ich implies that the image patches around human fixations

can be captured by this feature. Since we are now interest% d, on average, higher values for each of these featunes tha
in the spatial frequency distribution of local image costra he ’image patch,es selected at randatall eccentricities.

we used the magnitude of the local image gradient for ea hile our findings for RMS contrast are in agreement with

pixel as a measure of an extremely local (pixel-level) mea- eviously reported results [4, 5], in a related study, veal

. : 9
sure of 'mage contrast._ The design of the G?b‘?r kemnel an&rscovered that using foveated image patches producéé sign
the computation of the filter output proceeds similar to that

. . . . .icantly higher (statistically) contrast ratios than a rioneated
Sec_t|0n.3.3 with th? difference that the Input to Fhe a.”a'ys' analysis. Second, by examining the actual values of thes;ati
routine is the mggmtude of the local image gradient (wd;teawe found that center-surround contrast showed the greatest
of the patch luminance). difference between human and random fixations (maximum
ratio of 1.29), followed by contrast (1.12), center-surrdu
4. RESULTS luminance (1.11), and luminance (1.04).

The ensemble of image patches around observers’ fixatio
points was then analyzed to determine if the statistics ®f thg' SELECTING VISUALLY INTERESTING REGIONS

four image features discussed abqve were statistically d|fOur analysis shows that image patches selected by the HVS
ferent from that of an ensemble of image patches that werg

picked randomly. The ensemble of randomly selected patch $ve higher luminance, contrast, and stronger centeosuir
was obtained by shuffling the fixations of an observer for ofiles than randomly selected patches. This section ptese

. . . . . . a simple algorithm that uses these visually important image
particular image with that of a different image. Thus this P 9 y Imp 9

image shuffled database simulates a random human Obserfeatures to select fixations in a new scene. Given an image,
'mage shutt e simu u YRE algorithm begins by selecting the center of the image as
whose fixations are not influenced by features of the underlyt—

ing im but otherwi tur Il the statisti f um he first fixation point and creates a foveated image around
g Image, but otherwise captures afl the stalistics o his point. The foveated image is then filtered to create a
eye movements.

aliency map for each of the four features discussed earlier

. tr? f;)hnsiquence 0:; ';ﬁmg a dfoveated art;?lyss frtar_ne_wor%a"ency maps for luminance and contrast are computed us-
'S that the himan and the random ensembles contain |ma%g a fixed kernel size 096 pixels. Saliency maps for the

patCheS that have been blurred to d|ffgrent extents. Thgsat center-surround outputs are obtained using five Gabor leerne
anses a neeq tg perform an eccentricity-based analysesewh one per saccade bin) obtained using the procedure dedcribe
patches of smylar blur are grouped together and the retevai Section 3.3. The filtering process is space-variant the.
'mage featu_re_ is analyzed sepgrately for_ each qur._Tc_) pario type of kernel that is used at a certain location in the image
the eccentricity-based analysis of our image statistiashe

ich i the datab first ated with the | ftdepends on the distance of that location from the current fix-
patc :jn € ja ase Wt?]S tII‘S assouated ;N' tte ;}n?ﬂeot. ation point. The filtered output is interpreted simply aka-i
saccade, (in egree_s), nhatwas executed 1o get to that particy, , , map in which regions with large values are more likely
ular patch. The distribution of these saccade magnitudes we

. . . ) : to draw a fixation than regions with lower values. The four
partitioned into5 bins such that each bin contained the SaME 1t re maps were then linearly combined using a weighted
number of patches (arouri®00) and the patches in each bin

average where the weights for each of the feature maps were
were analyzed separately.

F hi featurs. si it ted in th selected to be proportional to the maximum value of the ra-
diff or eac |m3ge eﬁ ur b S|Fce Wel were In Ere;. €dintNe 45 values from Fig. 2. The algorithm selects the maximum
nerences (an ?O.tt € absolute va ues) in the Imagesstatl, o e from this weighted selection map as the next fixation
tics at observers’ fixation and randomly selected fixations

d th > of ht h oint, foveates the image around this point, and repeads thi
we corr'u?_ute. the ratio o aveLage patc eatlrj]r;a att ? OtE’rocess. Inhibition of return was incorporated to avoigésel
servers |xat|ons$(e,n)?og) to the average patch feature for ing previously selected regions.

image patches from the image shuffled datab&8ée ),qnq)

for each imagen, and then averaged this ratio across the Fig. 3illustrates, qualitatively, the performance of the fi
. ' — ation selection algorithms for two images from Fig. 1 (row 1,
N(= 101) images in the database as followS(e) 410 = g g g-1(

LN Blem)my . et ~ columns 1 and 2). For yisualization purposes, theT fixaticinsg
¥ Lon=1 Se)rana’ Finally, to evaluate the statistical sig- 29 observers on these images were clustered using a density-
nificance of the image statistic under consideration, wel useconstrained clustering algorithm. The top ten clusterh e
bootstrapping to obtain the sampling distribution of theame maximum density of fixations are shown as ellipses in Fig.



3. The fixation selection algorithm was used to select a se-
guence of 10 fixations, each of which was represented by a 2D
Gaussian window, illustrated by the bright regions in Fig. 3
The full width at half-max (FWHM) of the Gaussian roughly
equaled the diameter of the human foveola (alddutisual
angle). A good overlap between the ellipse (observers’ true
fixations) and the bright regions in the selection map (oint
selected by the algorithm) shows that the fixation selection
algorithm is able to select fixations with reasonable suxces
We also used the Kullback-Leibler Distance (KLD) to quan-
tify the distance between the selected and recorded fixation
First, each algorithmically selected fixation was replabgd

a 2D Gaussian (FWHM %°) and each fixation cluster by a

Fig. 1. Examples of images used for the experiment

2D Gaussian whose shape was determined by the shape of the

ellipse. The KLD between these two maps was computed and
is shown in Fig. 4 forl5 images. The top bar represents the
KLD between randomly generated fixations and the recorded
fixations, and indicates the minimum performance expected
from any fixation selection algorithm. The remaining bars
show the performance of the linearly combined feature maps
and each individual features. All image features perforta be
ter than a random searcher, with the combined feature map
producing the best correlation to recorded fixations.

In summary, despite their rapidity and sheer volume, fix-
ations of human observers are not deployed randomly. We
found that image regions selected by human fixations tend
to have, on average, higher luminance, contrast, and eenter

surround profiles than patches selected at random. The tecl:_l-

nigue presented here can be extended to analyze the distribu
tion of higher order features such as orientation,textang,
structure.
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